Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electronic structure engineering of Pt3Co nanoparticles via B, N co-doping of the carbon support boosts electrocatalytic methanol oxidation
Fuel ( IF 6.7 ) Pub Date : 2023-12-08 , DOI: 10.1016/j.fuel.2023.130560 Qian Zhou , Meida Chen , Bin Wang , Chenzhong Wu , Hongyan Pan , Qingjun Chen , Qingmei Wang , Geoffrey I.N. Waterhouse , Lishan Peng
Fuel ( IF 6.7 ) Pub Date : 2023-12-08 , DOI: 10.1016/j.fuel.2023.130560 Qian Zhou , Meida Chen , Bin Wang , Chenzhong Wu , Hongyan Pan , Qingjun Chen , Qingmei Wang , Geoffrey I.N. Waterhouse , Lishan Peng
Developing highly efficient and durable catalysts for the methanol oxidation reaction (MOR) is crucial to the commercialization and widespread uptake of direct methanol fuel cells (DMFCs). Carbon-supported Pt nanoparticle (NP) catalysts demonstrate high initial activities for MOR, but suffer from electrochemical instability. Herein, nanoalloying and heteroatom-doping strategies were adopted to prepare well-ordered intermetallic PtCo NPs anchored on B, N co-doped multiwalled carbon nanotubes, with the developed PtCo/BN-MWCNTs electrocatalyst offering high stability for MOR in 0.1 M HClO. Benefiting from the optimal electronic structure of the ordered PtCo NPs and asymmetric electron transfer (B → C → N) in the support, the activity, stability and CO poisoning resistance of PtCo/BN-MWCNTs electrocatalyst were significantly enhanced compared to a commercial Pt/C catalyst. Density functional theory (DFT) calculations revealed that electronegativity differences between Pt and Co enable significant charge redistribution, lowering the energy barriers and potentials for the oxidation of the *CO intermediate by OH* species, greatly enhancing MOR kinetics under acid conditions. Further, B, N co-doping of the MWCNTs strengthened the interaction with the PtCo NPs, further boosting MOR performance by suppressing PtCo dissolution into the electrolyte. The findings of this work are expected to be applied in catalyst design for a wide range of energy conversion devices.
中文翻译:
通过碳载体 B、N 共掺杂的 Pt3Co 纳米粒子的电子结构工程促进电催化甲醇氧化
开发用于甲醇氧化反应(MOR)的高效且耐用的催化剂对于直接甲醇燃料电池(DMFC)的商业化和广泛采用至关重要。碳载 Pt 纳米颗粒 (NP) 催化剂表现出较高的 MOR 初始活性,但存在电化学不稳定的问题。在此,采用纳米合金和杂原子掺杂策略制备了锚定在B、N共掺杂多壁碳纳米管上的有序金属间PtCo NPs,所开发的PtCo/BN-MWCNTs电催化剂在0.1 M HClO中为MOR提供了高稳定性。得益于有序 PtCo NPs 的最佳电子结构和载体中的不对称电子转移 (B → C → N),PtCo/BN-MWCNTs 电催化剂的活性、稳定性和抗 CO 中毒能力与商业 Pt/ C催化剂。密度泛函理论 (DFT) 计算表明,Pt 和 Co 之间的电负性差异可实现显着的电荷重新分布,降低能垒和 OH* 物质氧化 *CO 中间体的电位,从而大大增强酸性条件下的 MOR 动力学。此外,MWCNT 的 B、N 共掺杂增强了与 PtCo NP 的相互作用,通过抑制 PtCo 溶解到电解质中进一步提高了 MOR 性能。这项工作的结果预计将应用于各种能量转换装置的催化剂设计。
更新日期:2023-12-08
中文翻译:
通过碳载体 B、N 共掺杂的 Pt3Co 纳米粒子的电子结构工程促进电催化甲醇氧化
开发用于甲醇氧化反应(MOR)的高效且耐用的催化剂对于直接甲醇燃料电池(DMFC)的商业化和广泛采用至关重要。碳载 Pt 纳米颗粒 (NP) 催化剂表现出较高的 MOR 初始活性,但存在电化学不稳定的问题。在此,采用纳米合金和杂原子掺杂策略制备了锚定在B、N共掺杂多壁碳纳米管上的有序金属间PtCo NPs,所开发的PtCo/BN-MWCNTs电催化剂在0.1 M HClO中为MOR提供了高稳定性。得益于有序 PtCo NPs 的最佳电子结构和载体中的不对称电子转移 (B → C → N),PtCo/BN-MWCNTs 电催化剂的活性、稳定性和抗 CO 中毒能力与商业 Pt/ C催化剂。密度泛函理论 (DFT) 计算表明,Pt 和 Co 之间的电负性差异可实现显着的电荷重新分布,降低能垒和 OH* 物质氧化 *CO 中间体的电位,从而大大增强酸性条件下的 MOR 动力学。此外,MWCNT 的 B、N 共掺杂增强了与 PtCo NP 的相互作用,通过抑制 PtCo 溶解到电解质中进一步提高了 MOR 性能。这项工作的结果预计将应用于各种能量转换装置的催化剂设计。