当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
RuO2/CeO2 heterostructure anchored on carbon spheres as a bifunctional electrocatalyst for efficient water splitting in acidic media
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-12-08 , DOI: 10.1016/j.cej.2023.147939
Yun Wu , Rui Yao , Kaiyang Zhang , Qiang Zhao , Jinping Li , Guang Liu

The use of proton exchange membrane (PEM) hydrolysis technology holds promise for eco-friendly hydrogen production using renewable energy sources. However, developing efficient, cost-effective, and durable bifunctional electrocatalysts for the acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains challenging. Here, we synthesized RuO2/CeO2 heterojunction loaded on carbon spheres (RuO2/CeO2@C) via hydrothermal and annealing techniques to address this issue. Our experiments demonstrate exceptional catalytic activity of RuO2/CeO2@C for both OER and HER, with overpotentials of 170 and 120 mV, respectively, at 10 mA/cm2 in 0.5 M H2SO4. Moreover, the electrocatalyst enables overall water splitting at 1.54 V and maintains stability for over 100 h at 10 mA/cm2. Density functional theory (DFT) calculations suggest that RuO2/CeO2 heterojunction modifies d-band center of Ru, balances H adsorption/desorption behavior, accelerates reaction kinetics, and lowers the energy barrier, thereby enhancing electrocatalytic activity. These findings provide valuable insights for future efficient bifunctional water splitting electrocatalyst design.

中文翻译:


锚定在碳球上的 RuO2/CeO2 异质结构作为双功能电催化剂,可在酸性介质中高效分解水



质子交换膜(PEM)水解技术的使用有望利用可再生能源生产环保型氢气。然而,开发用于酸性析氧反应(OER)和析氢反应(HER)的高效、经济且耐用的双功能电催化剂仍然具有挑战性。在这里,我们通过水热和退火技术合成了负载在碳球上的RuO2/CeO2异质结(RuO2/CeO2@C)来解决这个问题。我们的实验表明,RuO2/CeO2@C 对 OER 和 HER 均具有出色的催化活性,在 0.5 M H2SO4 中,10 mA/cm2 下的过电势分别为 170 和 120 mV。此外,该电催化剂能够在 1.54 V 电压下实现整体水分解,并在 10 mA/cm2 电流下保持稳定性超过 100 小时。密度泛函理论(DFT)计算表明,RuO2/CeO2异质结修饰了Ru的d带中心,平衡H吸附/脱附行为,加速反应动力学,降低能垒,从而增强电催化活性。这些发现为未来高效双功能水分解电催化剂的设计提供了宝贵的见解。
更新日期:2023-12-08
down
wechat
bug