Nature Communications ( IF 14.7 ) Pub Date : 2023-12-05 , DOI: 10.1038/s41467-023-43259-2 Haidong Xu 1 , Ji Han 1 , Bin Zhao 1 , Ruigang Sun 1 , Guiyuan Zhong 1 , Guangrui Chen 1 , Yusuke Yamauchi 2, 3 , Buyuan Guan 1, 4
Hollow multi-shell mesoporous metal–organic framework (MOF) particles with accessible compartmentalization environments, plentiful heterogeneous interfaces, and abundant framework diversity are expected to hold great potential for catalysis, energy conversion, and biotechnology. However, their synthetic methodology has not yet been established. In this work, a facile dual-template-directed successive assembly approach has been developed for the preparation of monodisperse hollow multi-shell mesoporous MOF (UiO-66-NH2) particles through one-step selective etching of successively grown multi-layer MOFs with alternating two types of mesostructured layers. This strategy enables the preparation of hollow multi-shell mesoporous UiO-66-NH2 nanostructures with controllable shell numbers, accessible mesochannels, large pore volume, tunable shell thickness and chamber sizes. The methodology relies on creating multiple alternating layers of two different mesostructured MOFs via dual-template-directed successive assembly and their difference in framework stability upon chemical etching. Benefiting from the highly accessible Lewis acidic sites and the accumulation of reactants within the multi-compartment architecture, the resultant hollow multi-shell mesoporous UiO-66-NH2 particles exhibit enhanced catalytic activity for CO2 cycloaddition reaction. The dual-template-directed successive assembly strategy paves the way toward the rational construction of elaborate hierarchical MOF nanoarchitectures with specific physical and chemical features for different applications.
中文翻译:
一种简便的双模板引导连续组装空心多壳介孔金属有机骨架颗粒的方法
中空多壳介孔金属有机骨架(MOF)颗粒具有可接近的分隔环境、丰富的异质界面和丰富的骨架多样性,预计在催化、能量转换和生物技术方面具有巨大的潜力。然而,他们的合成方法尚未建立。在这项工作中,开发了一种简便的双模板定向连续组装方法,通过连续生长的多层MOF的一步选择性蚀刻来制备单分散空心多壳介孔MOF(UiO-66-NH 2 )颗粒具有交替的两种介观结构层。该策略能够制备空心多壳介孔UiO-66-NH 2纳米结构,其具有可控的壳数、可接近的介孔道、大孔体积、可调的壳厚度和室尺寸。该方法依赖于通过双模板定向连续组装创建两种不同介观结构 MOF 的多个交替层以及它们在化学蚀刻时框架稳定性的差异。受益于易接近的路易斯酸性位点和多室结构内反应物的积累,所得中空多壳介孔UiO-66-NH 2颗粒对CO 2环加成反应表现出增强的催化活性。双模板引导的连续组装策略为合理构建具有特定物理和化学特征、适合不同应用的精细分层 MOF 纳米结构铺平了道路。