当前位置:
X-MOL 学术
›
Chinese Journal of Structural Chemistry
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries
Chinese Journal of Structural Chemistry ( IF 5.9 ) Pub Date : 2023-11-29 , DOI: 10.1016/j.cjsc.2023.100203 Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng
Chinese Journal of Structural Chemistry ( IF 5.9 ) Pub Date : 2023-11-29 , DOI: 10.1016/j.cjsc.2023.100203 Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng
Lithium metal batteries (LMBs) represent a promising frontier in energy storage technology, offering high energy density but facing significant challenges. In this work, we address the critical challenge of lithium dendrite formation in LMBs, a key barrier to their efficiency and safety. Focusing on the potential of electrolyte additives, specifically lithium nitrate, to inhibit dendritic growth, we employ advanced multi-scale simulation techniques to explore the formation and properties of the solid electrolyte interphase (SEI) on the anode surface. Our study introduces a novel hybrid simulation methodology, HAIR (Hybrid and Reactive force field Molecular Dynamics), which combines molecular dynamics (AIMD) and reactive force field molecular dynamics (RMD). This approach allows for a more precise and reliable examination of the interaction mechanisms of nitrate additives within LMBs. Our findings demonstrate that lithium nitrate contributes to the formation of a stable and fast ionic conductor interface, effectively suppressing dendrite growth. These insights not only advance our understanding of dendrite formation and mitigation strategies in lithium metal batteries, but also highlight the efficacy of HAIR as a pioneering tool for simulating complex chemical interactions in battery materials, offering significant implications for the broader field of energy storage technology.
中文翻译:
硝酸锂添加剂对锂金属电池固体电解质界面的影响
锂金属电池(LMB)代表了储能技术的一个有前途的前沿领域,它提供高能量密度,但面临着重大挑战。在这项工作中,我们解决了 LMB 中锂枝晶形成的关键挑战,这是其效率和安全性的一个关键障碍。着眼于电解质添加剂(特别是硝酸锂)抑制枝晶生长的潜力,我们采用先进的多尺度模拟技术来探索阳极表面固体电解质界面(SEI)的形成和性质。我们的研究引入了一种新颖的混合模拟方法,HAIR(混合和反作用力场分子动力学),它结合了分子动力学(AIMD)和反作用力场分子动力学(RMD)。这种方法可以更精确、更可靠地检查 LMB 中硝酸盐添加剂的相互作用机制。我们的研究结果表明,硝酸锂有助于形成稳定且快速的离子导体界面,有效抑制枝晶生长。这些见解不仅增进了我们对锂金属电池中枝晶形成和缓解策略的理解,而且凸显了 HAIR 作为模拟电池材料中复杂化学相互作用的开创性工具的功效,为更广泛的储能技术领域提供了重大影响。
更新日期:2023-11-29
中文翻译:
硝酸锂添加剂对锂金属电池固体电解质界面的影响
锂金属电池(LMB)代表了储能技术的一个有前途的前沿领域,它提供高能量密度,但面临着重大挑战。在这项工作中,我们解决了 LMB 中锂枝晶形成的关键挑战,这是其效率和安全性的一个关键障碍。着眼于电解质添加剂(特别是硝酸锂)抑制枝晶生长的潜力,我们采用先进的多尺度模拟技术来探索阳极表面固体电解质界面(SEI)的形成和性质。我们的研究引入了一种新颖的混合模拟方法,HAIR(混合和反作用力场分子动力学),它结合了分子动力学(AIMD)和反作用力场分子动力学(RMD)。这种方法可以更精确、更可靠地检查 LMB 中硝酸盐添加剂的相互作用机制。我们的研究结果表明,硝酸锂有助于形成稳定且快速的离子导体界面,有效抑制枝晶生长。这些见解不仅增进了我们对锂金属电池中枝晶形成和缓解策略的理解,而且凸显了 HAIR 作为模拟电池材料中复杂化学相互作用的开创性工具的功效,为更广泛的储能技术领域提供了重大影响。