当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting the electrochemical performance and moisture stability of O3-type NaNi1/3Fe1/3Mn1/3O2 cathodes using novel Na2MoO4 coatings prepared via a polyvinylpyrrolidone-anchored complex coating process
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2023-12-05 , DOI: 10.1039/d3ta06034a Minjun Kim 1 , Minsu Choi 1 , Wonchang Choi 1
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2023-12-05 , DOI: 10.1039/d3ta06034a Minjun Kim 1 , Minsu Choi 1 , Wonchang Choi 1
Affiliation
O3-type layered oxides are considered highly promising cathode materials for sodium-ion batteries owing to their notable specific capacities, high theoretical energy densities, and low costs. However, the applications of O3-type layered oxides are limited owing to their structural degradation during charge–discharge cycles and poor moisture stability, which negatively affect their performance and durability. Notably, surface modifications of these materials play a crucial role in mitigating these challenges by providing a protective layer safeguarding the cathode material. In this study, Na2MoO4 (NMO) was successfully coated onto the surface of Na(Ni1/3Fe1/3Mn1/3)O2 (NFM) using a polyvinylpyrrolidone (PVP)-assisted wet chemical method. Despite their low costs and good electrical conductivities, Mo-based coatings are yet to be explored as potential coating materials for O3-type layered oxide cathodes. Here, the main PVP chain facilitates the formation of a uniform NMO coating layer by effectively anchoring Mo6+ ions onto the surface of the (Ni1/3Fe1/3Mn1/3)C2O4·xH2O ((NFM)C2O4) precursor. The presence of the NMO nanocoating layer on the NFM surface was confirmed via various characterization techniques. The NMO-coated NFM exhibited notable improvements in electrochemical performance compared to pristine NFM. In addition, the NMO-coated NFM exhibited superior moisture stability. This study presents an effective strategy to simultaneously improve the electrochemical performance and moisture stability of O3-type layered cathodes for sodium-ion batteries.
中文翻译:
使用聚乙烯吡咯烷酮锚定复合涂层工艺制备的新型 Na2MoO4 涂层提高 O3 型 NaNi1/3Fe1/3Mn1/3O2 阴极的电化学性能和水分稳定性
O3型层状氧化物因其显着的比容量、高理论能量密度和低成本而被认为是非常有前途的钠离子电池正极材料。然而,O3型层状氧化物的应用受到限制,因为它们在充放电循环过程中会发生结构退化,并且水分稳定性差,从而对其性能和耐久性产生负面影响。值得注意的是,这些材料的表面改性通过提供保护阴极材料的保护层在缓解这些挑战方面发挥着至关重要的作用。本研究采用聚乙烯吡咯烷酮(PVP)辅助湿化学法成功地将Na 2 MoO 4 (NMO)包覆到Na(Ni 1/3 Fe 1/3 Mn 1/3 )O 2 (NFM)表面。尽管钼基涂层成本低且导电性良好,但其作为 O3 型层状氧化物阴极的潜在涂层材料仍有待探索。这里,主PVP链通过有效地将Mo 6+离子锚定到(Ni 1/3 Fe 1/3 Mn 1/3 )C 2 O 4 · x H 2 O表面,促进均匀NMO涂层的形成。((NFM)C 2 O 4 )前体。通过各种表征技术证实了 NFM 表面上存在 NMO 纳米涂层。与原始 NFM 相比,NMO 涂层 NFM 的电化学性能显着提高。此外,NMO涂层的NFM表现出优异的水分稳定性。这项研究提出了一种同时提高钠离子电池O3型层状正极的电化学性能和水分稳定性的有效策略。
更新日期:2023-12-05
中文翻译:
使用聚乙烯吡咯烷酮锚定复合涂层工艺制备的新型 Na2MoO4 涂层提高 O3 型 NaNi1/3Fe1/3Mn1/3O2 阴极的电化学性能和水分稳定性
O3型层状氧化物因其显着的比容量、高理论能量密度和低成本而被认为是非常有前途的钠离子电池正极材料。然而,O3型层状氧化物的应用受到限制,因为它们在充放电循环过程中会发生结构退化,并且水分稳定性差,从而对其性能和耐久性产生负面影响。值得注意的是,这些材料的表面改性通过提供保护阴极材料的保护层在缓解这些挑战方面发挥着至关重要的作用。本研究采用聚乙烯吡咯烷酮(PVP)辅助湿化学法成功地将Na 2 MoO 4 (NMO)包覆到Na(Ni 1/3 Fe 1/3 Mn 1/3 )O 2 (NFM)表面。尽管钼基涂层成本低且导电性良好,但其作为 O3 型层状氧化物阴极的潜在涂层材料仍有待探索。这里,主PVP链通过有效地将Mo 6+离子锚定到(Ni 1/3 Fe 1/3 Mn 1/3 )C 2 O 4 · x H 2 O表面,促进均匀NMO涂层的形成。((NFM)C 2 O 4 )前体。通过各种表征技术证实了 NFM 表面上存在 NMO 纳米涂层。与原始 NFM 相比,NMO 涂层 NFM 的电化学性能显着提高。此外,NMO涂层的NFM表现出优异的水分稳定性。这项研究提出了一种同时提高钠离子电池O3型层状正极的电化学性能和水分稳定性的有效策略。