当前位置:
X-MOL 学术
›
Evol. Dev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Utilizing geometric morphometrics to investigate gene function during organ growth: Insights through the study of beetle horn shape allometry
Evolution and Development ( IF 2.6 ) Pub Date : 2023-12-02 , DOI: 10.1111/ede.12464 Patrick T Rohner 1, 2 , Yonggang Hu 1, 3 , Armin P Moczek 1
Evolution and Development ( IF 2.6 ) Pub Date : 2023-12-02 , DOI: 10.1111/ede.12464 Patrick T Rohner 1, 2 , Yonggang Hu 1, 3 , Armin P Moczek 1
Affiliation
Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect the size of dung beetle horns also recapitulate the effect of horn shape allometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g., doublesex, Foxo) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g., Distal-less, dachs) failed to align with allometry, implicating these pathways in potentially scaling-independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity.
中文翻译:
利用几何形态计量学研究器官生长过程中的基因功能:甲虫角形状异速生长研究的见解
静态异速生长是形态变异的主要组成部分。许多关于异速生长发展的文献研究了不同途径的功能扰动如何影响性状大小和体型之间的关系。通常,这样做的明确目标是确定能够感知器官大小和调节相对生长的发育机制。然而,相对性状大小的变化也可能是由一系列其他明显不同的发育过程引起的,例如图案或组织折叠的变化,但标准的单变量生物识别方法通常无法区分其他解释。在这里,我们利用几何形态计量学来研究已知影响粪甲虫角大小的功能性遗传操作在多大程度上也概括了角形状异速生长的影响。我们推断,控制相对生长途径的击倒表型应该与自然异速变异引起的形状变异非常相似。相反,我们预测,如果基因主要影响替代发育过程,则击倒效应应该与形状异速生长不太一致。我们发现几个基因(例如, doublesex、Foxo )的敲低效应确实与形状异速生长密切相关,表明它们相应的途径可能确实主要在相对性状生长的调节中发挥作用。相比之下,其他敲低效应(例如, Distal-less 、 dachs )未能与异速生长相一致,这表明这些途径可能与缩放无关的过程有关。 我们的研究结果缓和了对性状长度研究的解释,并强调了多变量方法在研究异速生长和表型可塑性方面的有用性。
更新日期:2023-12-02
中文翻译:
利用几何形态计量学研究器官生长过程中的基因功能:甲虫角形状异速生长研究的见解
静态异速生长是形态变异的主要组成部分。许多关于异速生长发展的文献研究了不同途径的功能扰动如何影响性状大小和体型之间的关系。通常,这样做的明确目标是确定能够感知器官大小和调节相对生长的发育机制。然而,相对性状大小的变化也可能是由一系列其他明显不同的发育过程引起的,例如图案或组织折叠的变化,但标准的单变量生物识别方法通常无法区分其他解释。在这里,我们利用几何形态计量学来研究已知影响粪甲虫角大小的功能性遗传操作在多大程度上也概括了角形状异速生长的影响。我们推断,控制相对生长途径的击倒表型应该与自然异速变异引起的形状变异非常相似。相反,我们预测,如果基因主要影响替代发育过程,则击倒效应应该与形状异速生长不太一致。我们发现几个基因(例如, doublesex、Foxo )的敲低效应确实与形状异速生长密切相关,表明它们相应的途径可能确实主要在相对性状生长的调节中发挥作用。相比之下,其他敲低效应(例如, Distal-less 、 dachs )未能与异速生长相一致,这表明这些途径可能与缩放无关的过程有关。 我们的研究结果缓和了对性状长度研究的解释,并强调了多变量方法在研究异速生长和表型可塑性方面的有用性。