Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Constructing Multiphase-Induced Interfacial Polarization to Surpass Defect-Induced Polarization in Multielement Sulfide Absorbers
Advanced Science ( IF 14.3 ) Pub Date : 2023-12-03 , DOI: 10.1002/advs.202307649 Shengchong Hui 1 , Xu Zhou 1 , Limin Zhang 1 , Hongjing Wu 1
Advanced Science ( IF 14.3 ) Pub Date : 2023-12-03 , DOI: 10.1002/advs.202307649 Shengchong Hui 1 , Xu Zhou 1 , Limin Zhang 1 , Hongjing Wu 1
Affiliation
The extremely weak heterointerface construction of high-entropy materials (HEM) hinders them being the electromagnetic wave (EMW) absorbers with ideal properties. To address this issue, this study proposes multiphase interfacial engineering and results in a multiphase-induced interfacial polarization loss in multielement sulfides. Through the selection of atoms with diverse reaction activities, the multiphase interfacial components of CuS (1 0 5), Fe0.5Ni0.5S2 (2 1 0), and CuFe2S3 (2 0 0) are constructed to enhance the interfacial polarization loss in multielement Cu-based sulfides. Compared with single-phase high-entropy Zn-based sulfides (ZnFeCoNiCr-S), the multiphase Cu-based sulfides (CuFeCoNiCr-S) possess optimized EMW absorption properties (effective absorption bandwidth (EAB) of 6.70 GHz at 2.00 mm) due to the existence of specific interface of CuS (1 0 5)/CuFe2S3 (2 0 0) with proper EM parameters. Furthermore, single-phase ZnFeCoNiCr-S into FeNi2S4 (3 1 1)/(Zn, Fe)S (1 1 1) heterointerface through 400 °C heat-treated is decomposed. The EMW absorption properties are enhanced by strong interfacial polarization (EAB of 4.83 GHz at 1.45 mm). This work reveals the reasons for the limited EMW absorption properties of high-entropy sulfides and proposes multiphase interface engineering to improve charge accumulation and polarization between specific interfaces, leading to the enhanced EMW absorption properties.
中文翻译:
在多元素硫化物吸收剂中构建多相诱导界面极化以超越缺陷诱导极化
高熵材料(HEM)极弱的异质界面结构阻碍了它们成为具有理想性能的电磁波(EMW)吸收体。为了解决这个问题,本研究提出了多相界面工程,并导致多元素硫化物中多相引起的界面极化损失。通过选择具有不同反应活性的原子,构建CuS(1 0 5)、Fe 0.5 Ni 0.5 S 2 (2 1 0)和CuFe 2 S 3 (2 0 0)多相界面组分,增强界面界面多元素铜基硫化物中的极化损耗。与单相高熵锌基硫化物(ZnFeCoNiCr-S)相比,多相铜基硫化物(CuFeCoNiCr-S)具有优化的电磁波吸收性能(2.00 mm处的有效吸收带宽(EAB)为6.70 GHz),这是由于CuS (1 0 5)/CuFe 2 S 3 (2 0 0) 特定界面的存在以及适当的电磁参数。此外,单相ZnFeCoNiCr-S通过400℃热处理分解成FeNi 2 S 4 (3 1 1)/(Zn, Fe)S (1 1 1)异质界面。强界面极化(1.45 mm 处的 EAB 为 4.83 GHz)增强了 EMW 吸收特性。这项工作揭示了高熵硫化物的电磁波吸收性能有限的原因,并提出了多相界面工程来改善特定界面之间的电荷积累和极化,从而增强电磁波吸收性能。
更新日期:2023-12-03
中文翻译:
在多元素硫化物吸收剂中构建多相诱导界面极化以超越缺陷诱导极化
高熵材料(HEM)极弱的异质界面结构阻碍了它们成为具有理想性能的电磁波(EMW)吸收体。为了解决这个问题,本研究提出了多相界面工程,并导致多元素硫化物中多相引起的界面极化损失。通过选择具有不同反应活性的原子,构建CuS(1 0 5)、Fe 0.5 Ni 0.5 S 2 (2 1 0)和CuFe 2 S 3 (2 0 0)多相界面组分,增强界面界面多元素铜基硫化物中的极化损耗。与单相高熵锌基硫化物(ZnFeCoNiCr-S)相比,多相铜基硫化物(CuFeCoNiCr-S)具有优化的电磁波吸收性能(2.00 mm处的有效吸收带宽(EAB)为6.70 GHz),这是由于CuS (1 0 5)/CuFe 2 S 3 (2 0 0) 特定界面的存在以及适当的电磁参数。此外,单相ZnFeCoNiCr-S通过400℃热处理分解成FeNi 2 S 4 (3 1 1)/(Zn, Fe)S (1 1 1)异质界面。强界面极化(1.45 mm 处的 EAB 为 4.83 GHz)增强了 EMW 吸收特性。这项工作揭示了高熵硫化物的电磁波吸收性能有限的原因,并提出了多相界面工程来改善特定界面之间的电荷积累和极化,从而增强电磁波吸收性能。