Light: Science & Applications ( IF 20.6 ) Pub Date : 2023-12-04 , DOI: 10.1038/s41377-023-01337-6 Chen Chen 1 , Xingjian Xiao 1 , Xin Ye 1 , Jiacheng Sun 1 , Jitao Ji 1 , Rongtao Yu 1 , Wange Song 1 , Shining Zhu 1 , Tao Li 1
Polarimetry plays an indispensable role in modern optics. Nevertheless, the current strategies generally suffer from bulky system volume or spatial multiplexing scheme, resulting in limited performances when dealing with inhomogeneous polarizations. Here, we propose a non-interleaved, interferometric method to analyze the polarizations based on a tri-channel chiral metasurface. A deep convolutional neural network is also incorporated to enable fast, robust and accurate polarimetry. Spatially uniform and nonuniform polarizations are both measured through the metasurface experimentally. Distinction between two semblable glasses is also demonstrated. Our strategy features the merits of compactness and high spatial resolution, and would inspire more intriguing design for detecting and sensing.
中文翻译:
神经网络辅助非交错手性超表面的高空间分辨率旋光测量
偏振测量在现代光学中起着不可或缺的作用。然而,当前的策略通常受到庞大的系统体积或空间复用方案的影响,导致在处理不均匀偏振时性能有限。在这里,我们提出了一种非交错的干涉方法来分析基于三通道手性超表面的偏振。还结合了深度卷积神经网络,以实现快速、稳健和准确的偏振测定。空间均匀和非均匀偏振都是通过超表面进行实验测量的。还展示了两种相似玻璃之间的区别。我们的策略具有紧凑性和高空间分辨率的优点,并将激发更有趣的检测和传感设计。