当前位置:
X-MOL 学术
›
Adv. Powder Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interlayer engineering and electronic regulation of MoSe2 nanosheets rolled hollow nanospheres for high-performance sodium-ion half/full batteries
Advanced Powder Materials Pub Date : 2023-12-02 , DOI: 10.1016/j.apmate.2023.100169
Jun Xu , Junbao Jiang , Heng Tang , Zhao Chen , Junwei Chen , Yan Zhang , Chun-Sing Lee
Advanced Powder Materials Pub Date : 2023-12-02 , DOI: 10.1016/j.apmate.2023.100169
Jun Xu , Junbao Jiang , Heng Tang , Zhao Chen , Junwei Chen , Yan Zhang , Chun-Sing Lee
![]() |
Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport, which restricts their high-rate capability and cycling stability. In this work, rGO@MoSe/ hierarchical architectures, consisting of conductive reduced graphene oxide (rGO) supported by hollow nanospheres that are rolled from superlattices of alternatively overlapped MoSe and N-doped amorphous carbon () monolayers, are synthesized as a high-performance sodium storage anode. Theoretical calculations reveal the intercalation of NAC monolayer between two adjacent MoSe monolayers improving electronic conductivity of MoSe in both surface and internal bulk to fully accelerate electron transport and enhance Na adsorption. The interoverlapped MoSe/NAC superlattice featuring a wide interlayer expansion (72.3 %) of MoSe dramatically decreases Na diffusion barriers for fast insertion/extraction. Moreover, the hollow nanospheres and the rGO conductive network contribute to a robust hiberarchy that can well release internal stress and buffer the volume expansion, thereby enabling outstanding structural stability. Consequently, the rGO@MoSe/NAC anode exhibits excellent high-rate capability of 194 mAh g and ultralong cyclability of 12 000 cycles with a low capacity fading rate of 0.0038 % per cycle at an ultra-high current of 50 A g, delivering the best high-rate cycling performance to date. Remarkably, the NaV(PO)‖rGO@MoSe/NAC full cells also present outstanding cycling stability (600 cycles) at 10C rate, which proves the great potential in fast-charging applications.
中文翻译:
用于高性能钠离子半/全电池的MoSe2纳米片卷制空心纳米球的层间工程和电子调节
层状过渡金属二硫属化物是钠存储的有前途的候选者,但其固有电子电导率较低,且快速电子/离子传输的层间距有限,这限制了它们的高倍率性能和循环稳定性。在这项工作中,rGO@MoSe/分层结构由空心纳米球支撑的导电还原氧化石墨烯(rGO)组成,空心纳米球由交替重叠的MoSe和N掺杂非晶碳()单层的超晶格滚动而成,被合成为高性能钠储存阳极。理论计算表明,两个相邻的 MoSe 单层之间插入 NAC 单层可以提高 MoSe 表面和内部的电子电导率,从而充分加速电子传输并增强 Na 吸附。相互重叠的 MoSe/NAC 超晶格具有宽的 MoSe 层间扩展 (72.3 %) 的特点,可显着降低 Na 扩散势垒,从而实现快速插入/脱出。此外,中空纳米球和rGO导电网络有助于形成强大的层次结构,可以很好地释放内应力并缓冲体积膨胀,从而实现出色的结构稳定性。因此,rGO@MoSe/NAC 负极表现出优异的 194 mAh g 的高倍率性能和 12 000 次循环的超长循环能力,在 50 A 的超高电流下,每循环 0.0038 % 的低容量衰减率g,提供迄今为止最佳的高速率循环性能。值得注意的是,NaV(PO)‖rGO@MoSe/NAC全电池在10C倍率下也表现出出色的循环稳定性(600次循环),这证明了其在快速充电应用中的巨大潜力。
更新日期:2023-12-02
中文翻译:

用于高性能钠离子半/全电池的MoSe2纳米片卷制空心纳米球的层间工程和电子调节
层状过渡金属二硫属化物是钠存储的有前途的候选者,但其固有电子电导率较低,且快速电子/离子传输的层间距有限,这限制了它们的高倍率性能和循环稳定性。在这项工作中,rGO@MoSe/分层结构由空心纳米球支撑的导电还原氧化石墨烯(rGO)组成,空心纳米球由交替重叠的MoSe和N掺杂非晶碳()单层的超晶格滚动而成,被合成为高性能钠储存阳极。理论计算表明,两个相邻的 MoSe 单层之间插入 NAC 单层可以提高 MoSe 表面和内部的电子电导率,从而充分加速电子传输并增强 Na 吸附。相互重叠的 MoSe/NAC 超晶格具有宽的 MoSe 层间扩展 (72.3 %) 的特点,可显着降低 Na 扩散势垒,从而实现快速插入/脱出。此外,中空纳米球和rGO导电网络有助于形成强大的层次结构,可以很好地释放内应力并缓冲体积膨胀,从而实现出色的结构稳定性。因此,rGO@MoSe/NAC 负极表现出优异的 194 mAh g 的高倍率性能和 12 000 次循环的超长循环能力,在 50 A 的超高电流下,每循环 0.0038 % 的低容量衰减率g,提供迄今为止最佳的高速率循环性能。值得注意的是,NaV(PO)‖rGO@MoSe/NAC全电池在10C倍率下也表现出出色的循环稳定性(600次循环),这证明了其在快速充电应用中的巨大潜力。