当前位置: X-MOL 学术Electrochem. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ag nanoparticles decorated ZnO nanopagodas for Photoelectrochemical application
Electrochemistry Communications ( IF 4.7 ) Pub Date : 2023-12-02 , DOI: 10.1016/j.elecom.2023.107645
Marwa Mohamed Abouelela , Go Kawamura , Wai Kian Tan , Muhd Amiruldin , Keiichiro Maegawa , Jin Nishida , Atsunori Matsuda

Photoelectrochemical water splitting (PEC-WS) utilizing solar energy and photoelectrodes immersed in an electrolyte has sparked an increased interest in hydrogen production. The PEC-WS efficiency is enhanced by controlling the nanostructure of photoelectrodes and sensitizing them with plasmonic metals. This study shows how the transformation from ZnO nanorods to ZnO nanopagodas and the deposition of Ag nanoparticles improve the photocurrent and PEC conversion efficiency under sunlight. The deposition of an optimal amount of Ag nanoparticles over ZnO nanopagodas exhibited the highest photocurrent of 2.15 mA cm−2 at 1.23 V vs RHE, while pure ZnO nanorods and nanopagodas achieved 0.90 and 1.43 mA cm−2, respectively. This extraordinary improvement in photocurrent density was thoroughly analyzed using various PEC and optical measurements as well as electromagnetic simulation. As a result, two main reasons for the improvement were derived. Firstly, ZnO nanopagodas can reduce the charge recombination rate due to the reduced structural defects and improve the light-harvesting ability due to their distinct superstructure characteristics. Secondly, the deposition of plasmonic Ag nanoparticles can improve the interfacial charge transfer and increase the ability to capture visible light due to their localized surface plasmon resonance effects.



中文翻译:

Ag纳米颗粒装饰ZnO纳米塔用于光电化学应用

利用太阳能和浸入电解质中的光电极的光电化学水分解(PEC-WS)引起了人们对氢气生产的兴趣日益浓厚。通过控制光电极的纳米结构并用等离子体金属敏化它们来提高 PEC-WS 效率。这项研究展示了从 ZnO 纳米棒到 ZnO 纳米塔的转变以及 Ag 纳米颗粒的沉积如何提高阳光下的光电流和 PEC 转换效率。在ZnO纳米塔上沉积最佳量的Ag纳米粒子在1.23 V vs RHE下表现出最高的光电流2.15 mA cm -2 ,而纯ZnO纳米棒和纳米塔分别达到0.90和1.43 mA cm -2。使用各种 PEC 和光学测量以及电磁模拟对光电流密度的这种非凡改进进行了彻底分析。结果,得出了改进的两个主要原因。首先,ZnO纳米塔可以由于结构缺陷的减少而降低电荷复合率,并由于其独特的超结构特征而提高光捕获能力。其次,等离激元银纳米粒子的沉积可以改善界面电荷转移,并由于其局域表面等离激元共振效应而提高捕获可见光的能力。

更新日期:2023-12-02
down
wechat
bug