Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spontaneous Imbibition in Nanomatrix–Fracture of Low Permeability Using Multiscale Nanofluidic Chips
Langmuir ( IF 3.7 ) Pub Date : 2023-11-30 , DOI: 10.1021/acs.langmuir.3c02673 Wanjun Qin 1 , Yaohao Guo 1 , Linghui Sun 2 , Jiawei Shi 1 , Bo Bao 1
Langmuir ( IF 3.7 ) Pub Date : 2023-11-30 , DOI: 10.1021/acs.langmuir.3c02673 Wanjun Qin 1 , Yaohao Guo 1 , Linghui Sun 2 , Jiawei Shi 1 , Bo Bao 1
Affiliation
Spontaneous imbibition has garnered increasing attention as an attractive mechanism for developing tight reservoirs. Despite valuable insights from previous experiments, there remains a lack of understanding regarding the imbibition process within multiscale nanopore-fracture networks. In this work, we devised an innovative multiscale model incorporating over 105 nanochannels and integrating a microfracture network to explore the complex imbibition behavior in tight formations. Additionally, fracture-free nanomatrix models with low permeability were developed for comparative discussions. The results show that the Lucas–Washburn equation remains valid at the tremendous fracture-free nanopore networks under the confinement of 500 nm, with a relative deviation of ±6%. The nanomatrix’s heterogeneity hinders the imbibition rate, resulting in a reduction of 4.6 to 10.8% in the imbibition slope. The viscosity plays a dominant role in the change of imbibition slope as temperature varies. Our experiments also found that the interactions between the nanomatrix and bulk fracture complicate the imbibition process. A single wetting front no longer applies in the nanomatrix–fracture networks. Differing fracture/microchannel connectivity leads to disparities in macroscopic patterns, saturation rates, and flow directions. The spatial arrangement of fractures significantly impacts the imbibition time. Overall, this work based on nanofluidic techniques systematically explores the effects of matrix heterogeneity, temperature, and fractures on the imbibition process. The real-time in situ visualization of fluid distribution in multiscale matrix–fracture systems has been achieved, which offers theoretical guidance for practical engineering applications.
中文翻译:
使用多尺度纳米流体芯片实现纳米基质中的自发渗吸 - 低渗透率断裂
自发渗吸作为开发致密储层的一种有吸引力的机制已引起越来越多的关注。尽管以前的实验提供了宝贵的见解,但对多尺度纳米孔裂缝网络内的吸入过程仍然缺乏了解。在这项工作中,我们设计了一种创新的多尺度模型,包含超过 10 5 个纳米通道并集成微裂缝网络,以探索致密地层中复杂的自吸行为。此外,还开发了具有低渗透率的无裂缝纳米基质模型用于比较讨论。结果表明,Lucas-Washburn方程在500 nm约束下的巨大无裂缝纳米孔网络中仍然有效,相对偏差为±6%。纳米基质的异质性阻碍了吸吸速率,导致吸吸斜率降低了 4.6% 至 10.8%。随着温度的变化,粘度在吸吸斜率的变化中起主导作用。我们的实验还发现,纳米基体和块体裂缝之间的相互作用使吸入过程变得复杂。单一润湿锋不再适用于纳米基质-裂缝网络。不同的裂缝/微通道连通性导致宏观模式、饱和率和流动方向的差异。裂缝的空间排列显着影响自吸时间。总体而言,这项基于纳米流体技术的工作系统地探讨了基质非均质性、温度和裂缝对渗吸过程的影响。实现了多尺度基质-裂缝系统中流体分布的实时原位可视化,为实际工程应用提供了理论指导。
更新日期:2023-11-30
中文翻译:
使用多尺度纳米流体芯片实现纳米基质中的自发渗吸 - 低渗透率断裂
自发渗吸作为开发致密储层的一种有吸引力的机制已引起越来越多的关注。尽管以前的实验提供了宝贵的见解,但对多尺度纳米孔裂缝网络内的吸入过程仍然缺乏了解。在这项工作中,我们设计了一种创新的多尺度模型,包含超过 10 5 个纳米通道并集成微裂缝网络,以探索致密地层中复杂的自吸行为。此外,还开发了具有低渗透率的无裂缝纳米基质模型用于比较讨论。结果表明,Lucas-Washburn方程在500 nm约束下的巨大无裂缝纳米孔网络中仍然有效,相对偏差为±6%。纳米基质的异质性阻碍了吸吸速率,导致吸吸斜率降低了 4.6% 至 10.8%。随着温度的变化,粘度在吸吸斜率的变化中起主导作用。我们的实验还发现,纳米基体和块体裂缝之间的相互作用使吸入过程变得复杂。单一润湿锋不再适用于纳米基质-裂缝网络。不同的裂缝/微通道连通性导致宏观模式、饱和率和流动方向的差异。裂缝的空间排列显着影响自吸时间。总体而言,这项基于纳米流体技术的工作系统地探讨了基质非均质性、温度和裂缝对渗吸过程的影响。实现了多尺度基质-裂缝系统中流体分布的实时原位可视化,为实际工程应用提供了理论指导。