当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e-textiles
Nano Energy ( IF 16.8 ) Pub Date : 2023-11-29 , DOI: 10.1016/j.nanoen.2023.109143
Yidong Peng , Jiancheng Dong , Yiting Zhang , Yuxi Zhang , Jiayan Long , Jiahui Sun , Tianxi Liu , Yunpeng Huang
Nano Energy ( IF 16.8 ) Pub Date : 2023-11-29 , DOI: 10.1016/j.nanoen.2023.109143
Yidong Peng , Jiancheng Dong , Yiting Zhang , Yuxi Zhang , Jiayan Long , Jiahui Sun , Tianxi Liu , Yunpeng Huang
![]() |
On-skin electronics with excellent passive cooling performance are highly favorable in improving human thermal comfort and reducing cooling energy consumption, which has received less research attention recently. Herein, a permeable and skin-conformable electronic textile (e-textile) with remarkable passive radiative cooling (PRC) performance is developed for all-day multi-environment passive cooling and human electrophysiological monitoring. The excellent passive cooling performance is attributed to the evenly encapsulated Al2 O3 microparticles and thermally-fused nano/micropores in the nonwoven styrene-ethylene-butylene-styrene (SEBS) elastomeric microfibers, thus high emissivity (maximum emissivity>97%) and efficient backscattering of ultraviolet-visible-near infrared radiation (sunlight reflectivity>90%) can be realized simultaneously, resulting in the superior radiative cooling capability at daytime (10.5 °C and 11.3 °C for sunny and cloudy weather, compared with the ambient environment) and at nighttime (7.0 °C compared to pure SEBS textiles). Moreover, the obtained PRC e-textiles printed with liquid metal can serve as thermally comfortable and skin-mountable bioelectrodes for monitoring high-fidelity electrophysiological signals (including electrocardiograph (ECG), surface electromyogram (sEMG), and electroencephalograph (EEG) signals even underwater). Thus, this ultrastretchable PRC e-textile provides a promising alternative for zero-energy cooling in health monitoring epidermal electronics.
中文翻译:
基于超拉伸和被动辐射冷却电子纺织品的热舒适表皮生物电极
具有优异被动冷却性能的皮肤电子器件对于提高人体热舒适度和降低冷却能耗非常有利,但近年来的研究关注较少。在此,开发了一种具有卓越的被动辐射冷却(PRC)性能的可渗透且贴合皮肤的电子纺织品(e-textile),用于全天多环境被动冷却和人体电生理监测。优异的被动冷却性能归因于非织造苯乙烯-乙烯-丁烯-苯乙烯(SEBS)弹性体微纤维中均匀封装的Al2O3微粒和热熔纳米/微孔,从而具有高发射率(最大发射率>97%)和高效的反向散射可同时实现紫外-可见-近红外辐射(太阳光反射率>90%),白天(晴天和阴天与周围环境相比分别为10.5℃和11.3℃)和夜间具有优异的辐射制冷能力。夜间(与纯 SEBS 纺织品相比为 7.0 °C)。此外,所获得的液态金属印刷的PRC电子纺织品可以作为热舒适且可贴在皮肤上的生物电极,用于监测高保真电生理信号(包括心电图(ECG)、表面肌电图(sEMG)和脑电图(EEG)信号,甚至在水下)。因此,这种超拉伸的 PRC 电子纺织品为健康监测表皮电子设备的零能耗冷却提供了一种有前景的替代方案。
更新日期:2023-11-29
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
基于超拉伸和被动辐射冷却电子纺织品的热舒适表皮生物电极
具有优异被动冷却性能的皮肤电子器件对于提高人体热舒适度和降低冷却能耗非常有利,但近年来的研究关注较少。在此,开发了一种具有卓越的被动辐射冷却(PRC)性能的可渗透且贴合皮肤的电子纺织品(e-textile),用于全天多环境被动冷却和人体电生理监测。优异的被动冷却性能归因于非织造苯乙烯-乙烯-丁烯-苯乙烯(SEBS)弹性体微纤维中均匀封装的Al2O3微粒和热熔纳米/微孔,从而具有高发射率(最大发射率>97%)和高效的反向散射可同时实现紫外-可见-近红外辐射(太阳光反射率>90%),白天(晴天和阴天与周围环境相比分别为10.5℃和11.3℃)和夜间具有优异的辐射制冷能力。夜间(与纯 SEBS 纺织品相比为 7.0 °C)。此外,所获得的液态金属印刷的PRC电子纺织品可以作为热舒适且可贴在皮肤上的生物电极,用于监测高保真电生理信号(包括心电图(ECG)、表面肌电图(sEMG)和脑电图(EEG)信号,甚至在水下)。因此,这种超拉伸的 PRC 电子纺织品为健康监测表皮电子设备的零能耗冷却提供了一种有前景的替代方案。