当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MIL-101-derived porous WO3/FeWO4 hierarchical structures with efficient heterojunction interfaces for excellent room temperature n-butanol-sensing performance
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-11-25 , DOI: 10.1016/j.cej.2023.147647
Xueying Wang , Qian Ma , Yi Wang , Dongheng Zhao , Lingyu Li , Huayushuo Zhang , Bolong Li

This study originally reports the in-situ construction of porous WO3/FeWO4 ribbon-like hierarchical composites with unique and intense heterojunction interface behavior and the enhanced adsorption and carrier transport capability for effectively detecting n-butanol at room temperature. The introduction of different adding amounts of MIL-101 plays the key role of the morphological evolution of WO3-based microstructures with the well-distributed nanoparticles in situ growth on the surface by a facile electrospinning and subsequent calcination process. Compared with pristine WO3, a sharp and useful reduction of the optimal operating temperature from 220 to 25 °C can be observed as the Fe component increasing, mainly owing to the inverted p-type gas sensitive response caused by the controllable variable of FeWO4 phase in the multiple effective WO3-FeWO4 heterojunctions. The optimal WO3/FeWO4 composites can display the highest response of 12.3 and a relatively short response/recovery times of 110/140 s to 100 ppm n-butanol at 25 °C, together with the superior gas selectivity, repeatability, humidity and long-term stability. Density functional theory (DFT) simulation is employed for verifying the significant adsorption interaction and charge transfer between n-butanol molecule and WO3/FeWO4. Regular distribution of WO3-FeWO4 heterojunction interfaces can not only determine the collaborative modulation of electronic structures, but also provide the efficient surface/interface transport mechanism for MIL-101 induced one-dimensional (1D) hierarchical ribbons. Actually, the integrated gas-sensitive components based on WO3/FeWO4 composites exhibit the rapid response characteristic under room temperature condition and provide a friendly strategy of optimizing the practical detection of ppm-level n-butanol for other inorganic heterogeneous sensors.

中文翻译:


MIL-101 衍生的多孔 WO3/FeWO4 分级结构具有高效异质结界面,具有出色的室温正丁醇传感性能



本研究首次报道了多孔WO3/FeWO4带状分级复合材料的原位构建,该复合材料具有独特而强烈的异质结界面行为以及增强的吸附和载流子传输能力,可在室温下有效检测正丁醇。不同添加量的MIL-101的引入对WO3基微结构的形态演化起到了关键作用,通过简单的静电纺丝和随后的煅烧过程,均匀分布的纳米颗粒在表面原位生长。与原始 WO3 相比,随着 Fe 组分的增加,可以观察到最佳工作温度从 220 °C 急剧下降到 25 °C,这主要是由于 FeWO4 相的可控变量引起的倒 p 型气敏响应。多个有效的WO3-FeWO4异质结。最佳的 WO3/FeWO4 复合材料在 25 °C 下对 100 ppm 正丁醇可以表现出 12.3 的最高响应和 110/140 s 的相对较短的响应/恢复时间,以及优异的气体选择性、重复性、湿度和长期稳定性。期限稳定性。采用密度泛函理论(DFT)模拟来验证正丁醇分子与WO3/FeWO4之间显着的吸附相互作用和电荷转移。 WO3-FeWO4异质结界面的规则分布不仅可以决定电子结构的协同调制,还可以为MIL-101诱导的一维(1D)分层带提供有效的表面/界面传输机制。 实际上,基于WO3/FeWO4复合材料的集成气敏元件在室温条件下表现出快速响应特性,为优化其他无机异质传感器的ppm级正丁醇的实际检测提供了友好的策略。
更新日期:2023-11-25
down
wechat
bug