当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Formation Mechanism of CO2 and CH4 Hydrates in Bubbly Flow in a Horizontal Pipeline
Energy & Fuels ( IF 5.2 ) Pub Date : 2023-11-29 , DOI: 10.1021/acs.energyfuels.3c02781
Weiqi Fu 1, 2 , Guoliang Li 1 , Xinlu Ding 1 , Jinli Wang 1 , Hui Liu 1 , Bingxiang Huang 2
Energy & Fuels ( IF 5.2 ) Pub Date : 2023-11-29 , DOI: 10.1021/acs.energyfuels.3c02781
Weiqi Fu 1, 2 , Guoliang Li 1 , Xinlu Ding 1 , Jinli Wang 1 , Hui Liu 1 , Bingxiang Huang 2
Affiliation
![]() |
Considering that gas hydrate formation in the deep-water wellbore becomes an unavoidable flow assurance issue, the experiments of CO2 and CH4 hydrate formation in gas–liquid two-phase bubbly flow are performed under the flow velocity from 0.68 to 3.13 m/s and the void fraction at about 7 vol %. The study indicates that the two-phase flow condition can create favorable environments for CO2 and CH4 hydrate crystallizations and that the equilibrium condition found in the experiment is lower than the theoretical value. Moreover, both CO2 and CH4 hydrate formation are the mass-transfer-limited process, and CO2 and CH4 hydrate formation rates have a nonlinear relationship with experimental times. The hydrate formation rates and mass transfer coefficients are increased with an increase in the flow velocity. After comparisons, the formation characteristics of CH4 hydrates are more complex than those of CO2 hydrates. The CH4 hydrate formation rates vary in five steps with the experimental time increasing. Moreover, because CO2 has a higher solubility in water and a weaker vapor–hydrate–liquid three-phase equilibrium condition, CO2 hydrates have higher hydrate formation rates and higher mass transfer coefficients than CH4 hydrates, which are 3.29–7.88 and 6.2–7 times correspondingly. CO2 hydrates have been proven to form rapidly and induce a hydrate risk in a short time in the deep-water wellbore. The work reveals the formation characteristics of CO2 and CH4 hydrate formation in bubbly flow and contributes to the development of a more efficient hydrate management plan for developing deep-water oil and gas resources.
中文翻译:
水平管道气泡流中CO2和CH4水合物的形成机理
考虑到深水井筒中天然气水合物的生成成为不可避免的流动保障问题,在0.68~3.13 m/s的流速下进行了气液两相气泡流中CO 2和CH 4水合物生成的实验。且空隙率约为7体积%。研究表明,两相流条件可为CO 2和CH 4水合物结晶创造有利的环境,且实验发现的平衡条件低于理论值。此外,CO 2和CH 4水合物的形成均为传质限制过程,CO 2和CH 4水合物的形成速率与实验时间呈非线性关系。水合物形成速率和传质系数随着流速的增加而增加。经比较,CH 4水合物的形成特征比CO 2水合物的形成特征更为复杂。随着实验时间的增加,CH 4水合物的形成速率分五个阶段变化。此外,由于CO 2在水中的溶解度较高,气-水合物-液三相平衡条件较弱,因此CO 2水合物比CH 4水合物具有更高的水合物形成速率和更高的传质系数,分别为3.29~7.88和6.2。相应地 –7 次。CO 2水合物已被证明在深水井筒中快速形成并在短时间内引发水合物风险。该工作揭示了气泡流中CO 2和CH 4水合物的形成特征,有助于为开发深水油气资源制定更有效的水合物管理方案。
更新日期:2023-11-29
中文翻译:

水平管道气泡流中CO2和CH4水合物的形成机理
考虑到深水井筒中天然气水合物的生成成为不可避免的流动保障问题,在0.68~3.13 m/s的流速下进行了气液两相气泡流中CO 2和CH 4水合物生成的实验。且空隙率约为7体积%。研究表明,两相流条件可为CO 2和CH 4水合物结晶创造有利的环境,且实验发现的平衡条件低于理论值。此外,CO 2和CH 4水合物的形成均为传质限制过程,CO 2和CH 4水合物的形成速率与实验时间呈非线性关系。水合物形成速率和传质系数随着流速的增加而增加。经比较,CH 4水合物的形成特征比CO 2水合物的形成特征更为复杂。随着实验时间的增加,CH 4水合物的形成速率分五个阶段变化。此外,由于CO 2在水中的溶解度较高,气-水合物-液三相平衡条件较弱,因此CO 2水合物比CH 4水合物具有更高的水合物形成速率和更高的传质系数,分别为3.29~7.88和6.2。相应地 –7 次。CO 2水合物已被证明在深水井筒中快速形成并在短时间内引发水合物风险。该工作揭示了气泡流中CO 2和CH 4水合物的形成特征,有助于为开发深水油气资源制定更有效的水合物管理方案。