当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On-surface synthesis of aromatic cyclo[10]carbon and cyclo[14]carbon
Nature ( IF 50.5 ) Pub Date : 2023-11-29 , DOI: 10.1038/s41586-023-06741-x
Luye Sun 1 , Wei Zheng 1 , Wenze Gao 1 , Faming Kang 1 , Mali Zhao 1 , Wei Xu 1
Affiliation  

All-carbon materials based on sp2-hybridized atoms, such as fullerenes1, carbon nanotubes2 and graphene3, have been much explored due to their remarkable physicochemical properties and potential for applications. Another unusual all-carbon allotrope family are the cyclo[n]carbons (Cn) consisting of two-coordinated sp-hybridized atoms. They have been studied in the gas phase since the twentieth century4,5,6, but their high reactivity has meant that condensed-phase synthesis and real-space characterization have been challenging, leaving their exact molecular structure open to debate7,8,9,10,11. Only in 2019 was an isolated C18 generated on a surface and its polyynic structure revealed by bond-resolved atomic force microscopy12,13, followed by a recent report14 on C16. The C18 work trigged theoretical studies clarifying the structure of cyclo[n]carbons up to C100 (refs. 15,16,17,18,19,20), although the synthesis and characterization of smaller Cn allotropes remains difficult. Here we modify the earlier on-surface synthesis approach to produce cyclo[10]carbon (C10) and cyclo[14]carbon (C14) via tip-induced dehalogenation and retro-Bergman ring opening of fully chlorinated naphthalene (C10Cl8) and anthracene (C14Cl10) molecules, respectively. We use atomic force microscopy imaging and theoretical calculations to show that, in contrast to C18 and C16, C10 and C14 have a cumulenic and cumulene-like structure, respectively. Our results demonstrate an alternative strategy to generate cyclocarbons on the surface, providing an avenue for characterizing annular carbon allotropes for structure and stability.



中文翻译:


芳香族环[10]碳和环[14]碳的表面合成



基于sp 2杂化原子的全碳材料,例如富勒烯1 、碳纳米管2和石墨烯3 ,由于其卓越的物理化学性质和应用潜力而得到了广泛的探索。另一个不寻常的全碳同素异形体家族是由两个配位的sp杂化原子组成的环[ n ]碳( Cn )。自二十世纪以来,人们一直在气相中研究它们4,5,6 ,但它们的高反应性意味着凝聚相合成和真实空间表征一直具有挑战性,使得它们的确切分子结构有待争论7,8, 9,10,11 。仅在 2019 年,表面上才生成了一个孤立的 C 18 ,并且通过键分辨原子力显微镜揭示了其多聚结构12,13 ,随后又发表了关于 C 16的最新报告14 。 C 18工作引发了理论研究,阐明了 C 100以内的环[ n ]碳的结构(参考文献15,16,17,18,19,20 ),尽管较小的 C n同素异形体的合成和表征仍然很困难。在这里,我们修改了早期的表面合成方法,通过尖端诱导脱卤和全氯化萘(C 10 Cl)的逆伯格曼开环来生产环[10]碳(C 10 )和环[14]碳(C 148 )和蒽(C 14 Cl 10 )分子。 我们使用原子力显微镜成像和理论计算表明,与C 18和C 16相比,C 10和C 14分别具有积聚烯和类积聚烯结构。我们的结果展示了一种在表面生成环碳的替代策略,为表征环状碳同素异形体的结构和稳定性提供了途径。

更新日期:2023-11-30
down
wechat
bug