Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A lower bound in the problem of realization of cycles
Journal of Topology ( IF 0.8 ) Pub Date : 2023-11-28 , DOI: 10.1112/topo.12320 Vasilii Rozhdestvenskii 1, 2, 3
Journal of Topology ( IF 0.8 ) Pub Date : 2023-11-28 , DOI: 10.1112/topo.12320 Vasilii Rozhdestvenskii 1, 2, 3
Affiliation
We consider the classical Steenrod problem on realization of integral homology classes by continuous images of smooth oriented manifolds. Let be the smallest positive integer such that any integral -dimensional homology class becomes realizable in the sense of Steenrod after multiplication by . The best known upper bound for was obtained independently by Brumfiel and Buchstaber in 1969. All known lower bounds for were very far from this upper bound. The main result of this paper is a new lower bound for that is asymptotically equivalent to the Brumfiel–Buchstaber upper bound (in the logarithmic scale). For , we prove that our lower bound is exact. Also, we obtain analogous results for the case of realization of integral homology classes by continuous images of smooth stably complex manifolds.
中文翻译:
循环实现问题的下界
我们考虑通过平滑定向流形的连续图像实现积分同调类的经典 Steenrod 问题。让是最小的正整数,使得任何积分乘以 后,维同调类在 Steenrod 意义上变得可实现 。最著名的上限为是由 Brumfiel 和 Buchstaber 于 1969 年独立获得的。所有已知的下界离这个上限还很远。本文的主要结果是一个新的下界渐近等于 Brumfiel-Buchstaber 上限(以对数标度)。为了,我们证明我们的下界是准确的。此外,对于通过平滑稳定复流形的连续图像实现积分同调类的情况,我们获得了类似的结果。
更新日期:2023-11-29
中文翻译:
循环实现问题的下界
我们考虑通过平滑定向流形的连续图像实现积分同调类的经典 Steenrod 问题。让是最小的正整数,使得任何积分乘以 后,维同调类在 Steenrod 意义上变得可实现 。最著名的上限为是由 Brumfiel 和 Buchstaber 于 1969 年独立获得的。所有已知的下界离这个上限还很远。本文的主要结果是一个新的下界渐近等于 Brumfiel-Buchstaber 上限(以对数标度)。为了,我们证明我们的下界是准确的。此外,对于通过平滑稳定复流形的连续图像实现积分同调类的情况,我们获得了类似的结果。