当前位置: X-MOL 学术J. Topol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Motivic Pontryagin classes and hyperbolic orientations
Journal of Topology ( IF 0.8 ) Pub Date : 2023-11-21 , DOI: 10.1112/topo.12317
Olivier Haution 1, 2
Affiliation  

We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups GL $\operatorname{GL}$ , SL c $\operatorname{SL}^c$ , SL $\operatorname{SL}$ , Sp $\operatorname{Sp}$ ). We show that hyperbolic orientations of η $\eta$ -periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that GL $\operatorname{GL}$ -orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that η $\eta$ -periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space BGL n $\operatorname{BGL}_n$ . Finally, we construct the universal hyperbolically oriented η $\eta$ -periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum MGL $\operatorname{MGL}$ .

中文翻译:

Motivic Pontryagin 类和双曲方向

我们引入了动机环谱的双曲取向的概念,它概括了各种现有的取向概念(通过群 GL $\操作员名称{GL}$ , SL C $\操作员名称{SL}^c$ , SL $\操作员名称{SL}$ , 斯普 $\操作员名称{Sp}$ )。我们证明了双曲方向 η $\eta$ -周期环谱对应于庞特里亚金类理论,与 GL $\操作员名称{GL}$ -任意环谱的方向对应于陈类理论。我们证明 η $\eta$ -通过计算étale分类空间的上同调,周期双曲导向的上同调理论不承认向量丛的进一步特征类 BGL n $\操作员名称{BGL}_n$ 。最后,我们构造了通用双曲导向 η $\eta$ -周期性交换动机环谱,Voevodsky 的共边谱的类似物 麦格莱 $\操作员名称{MGL}$
更新日期:2023-11-26
down
wechat
bug