Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Motivic Pontryagin classes and hyperbolic orientations
Journal of Topology ( IF 0.8 ) Pub Date : 2023-11-21 , DOI: 10.1112/topo.12317 Olivier Haution 1, 2
Journal of Topology ( IF 0.8 ) Pub Date : 2023-11-21 , DOI: 10.1112/topo.12317 Olivier Haution 1, 2
Affiliation
We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups , , , ). We show that hyperbolic orientations of -periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that -orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that -periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space . Finally, we construct the universal hyperbolically oriented -periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum .
中文翻译:
Motivic Pontryagin 类和双曲方向
我们引入了动机环谱的双曲取向的概念,它概括了各种现有的取向概念(通过群,,,)。我们证明了双曲方向-周期环谱对应于庞特里亚金类理论,与-任意环谱的方向对应于陈类理论。我们证明-通过计算étale分类空间的上同调,周期双曲导向的上同调理论不承认向量丛的进一步特征类。最后,我们构造了通用双曲导向-周期性交换动机环谱,Voevodsky 的共边谱的类似物。
更新日期:2023-11-26
中文翻译:
Motivic Pontryagin 类和双曲方向
我们引入了动机环谱的双曲取向的概念,它概括了各种现有的取向概念(通过群,,,)。我们证明了双曲方向-周期环谱对应于庞特里亚金类理论,与-任意环谱的方向对应于陈类理论。我们证明-通过计算étale分类空间的上同调,周期双曲导向的上同调理论不承认向量丛的进一步特征类。最后,我们构造了通用双曲导向-周期性交换动机环谱,Voevodsky 的共边谱的类似物。