当前位置: X-MOL 学术Conserv. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Remote seamounts are key conservation priorities for pelagic wildlife
Conservation Letters ( IF 7.7 ) Pub Date : 2023-11-20 , DOI: 10.1111/conl.12993
Christopher D. H. Thompson 1, 2 , Jessica J. Meeuwig 1 , Alan M. Friedlander 2, 3 , Enric Sala 2
Affiliation  

The pelagic ocean is Earth's largest habitat, constituting 99% of the global biosphere by volume, directly or indirectly supporting most marine life, and supplying the majority of fish consumed by humans (Game et al., 2009; Pauly et al., 2002). However, the world's pelagic fauna is globally declining largely as a result of unsustainable fishing (Pauly & Zeller, 2016). Industrial fishing has reduced the populations of tunas and their relatives by 60% and of oceanic sharks and rays by 71% over the past half century (Juan-Jordá et al., 2011; Pacoureau et al., 2021). Declines in pelagic wildlife weaken ecosystem functioning, drive biodiversity loss, and undermine food security and economic stability for many of the world's people.

Remote regions of the ocean that remain less impacted by humans are refuges for mobile and heavily targeted species. These regions harbor wildlife assemblages with higher diversity, greater abundance, larger size, and increased biomass, and can yield valuable insights into ecological processes (Campbell et al., 2020; Juhel et al., 2019; Thompson & Meeuwig, 2022). Remote regions offer a glimpse of what the ocean was like prior to large-scale anthropogenic impact, a source from which the rest of the ocean can be regenerated, and a benchmark for marine protected areas (MPAs) and fisheries management. However, with human impacts now extending across the global ocean (Halpern et al., 2008; Tickler et al., 2018), remote areas are increasingly threatened. Urgent attention is required to ensure that remote regions avoid mirroring the degradation seen in areas more proximate to humans.

Our knowledge of the pelagic ocean remains limited relative to shallow coastal habitats, making prioritizing conservation efforts difficult. This is especially the case in remote regions where scientific information is even more scarce. We do know, however, that pelagic species associate strongly with bathymetric features such as seamounts, undersea canyons, and oceanic islands (Bouchet, 2015; Morato et al., 2010; Thompson et al., 2021). Both physical and biological drivers make these features important locations for foraging, reproduction, navigation, and other essential functions of pelagic wildlife (Garrigue et al., 2015; Maguire et al., 2023; Rogers, 2018). Seamounts are particularly important to large pelagic animals and often hold relatively high densities of threatened and commercially important species such as sharks, tunas, and billfishes, some of which are generally highly mobile but show high residency at these features (Morato et al., 2008; Wright et al., 2021). However, the high economic value and conservative life histories of these species mean fishing can quickly decimate seamount communities. As such, seamount communities proximate to humans often become degraded first (Clark, 1999).

There are an estimated 37,889 seamounts in the global ocean, yet less than 4% have been surveyed (Yesson et al., 2021; Figure 1). Moreover, less than 6% are located in fully and highly protected MPAs (mpatlas.org; Grorud-Colvert et al., 2021). The protection of seamounts thus represents a significant conservation opportunity. Importantly, different bathymetric structures support distinct assemblages (Thompson et al., 2021) and thus a range of remote structures should be included to ensure representative protection. The protection of subsurface features will benefit pelagic biodiversity, as well as providing significant benefits in the conservation of important demersal fish assemblages (Galbraith et al., 2021) and many vulnerable benthic marine ecosystems such as deep reef communities given their higher concentration at these features (Rogers, 2018). Many seamounts, including those proximate to human populations, have significant biodiversity conservation value (Morato et al., 2010). However, we argue that remote seamounts where degradation has been limited to date are priorities for protection given the high abundance of targeted species present and the disproportionate contribution that such places make to biodiversity and our understanding of how human impact is transforming our oceans.

Details are in the caption following the image
FIGURE 1
Open in figure viewerPowerPoint
Global marine protected areas (light green; UNEP-WCMC & IUCN, 2022) overlayed with the global distribution of seamounts (blue triangles) as defined by Yesson et al. (2020). This distribution shows concentrations along tectonic boundaries and geologically active parts of the seafloor.

Well-designed and well-managed highly protected MPAs demonstrably halt and reverse declines in ocean wildlife, increase fisheries yields in adjacent waters, and enhance resilience to climate change (Edgar et al., 2014; Roberts et al., 2017; Sala & Giakoumi, 2018). The combination of remoteness and large-scale protection is particularly effective in biodiversity conservation (Juhel et al., 2018) and large fully and highly protected MPAs contribute significantly to seamount protection within EEZs. There is ample scientific evidence of the need to protect at least 30% of land and sea by 2030 (Dinerstein et al., 2019; O'Leary et al., 2016), a commitment now made in the Kunming–Montreal Global Biodiversity Framework, ratified in December 2022. The United Nations General Assembly has also recently established a treaty to facilitate conservation and sustainable use of marine biodiversity in areas beyond national jurisdiction (ABNJs; Stokstad, 2023; United Nations General Assembly, 2023). This instrument provides a legal framework for the implementation of MPAs in ABNJs. With 58% of seamounts located in ABNJs, and less than 1% of these in highly protected MPAs, remote seamounts are a prime target to deliver on biodiversity conservation commitments. Moreover, recent multinational treaties have recognized the importance of these features and are collaborating to protect areas both across national and international waters. For example, the Eastern Tropical Pacific Marine Corridor (CMAR) initiative extends across islands, coasts, and seamount chains in the Exclusive Economic Zones (EEZs) of Costa Rica, Panamá, Colombia, and Ecuador. Perú and Chile are also working together to protect the Nazca and Salas y Gómez Ridge system, which stretches across their EEZs and the international waters between them (Wagner et al., 2021). These progressive steps provide a clear and positive example of how collaboration among countries is possible and can protect valuable marine habitats.

Increasing threats and growing recognition of the importance of the natural world have strengthened and necessitated the demand for protection of natural environments globally. The high density of life and residency of, generally highly mobile, pelagic fauna at remote seamounts make these locations prone to anthropogenic destruction but also ideal targets for conservation (Morato et al., 2010; Wright et al., 2021). Given the body of evidence on the importance of remote seamounts, their protection is a critical step in sustaining pelagic wildlife populations and will benefit the many species that utilize them, including ourselves.



中文翻译:

偏远海山是远洋野生动物的关键保护重点

远洋海洋是地球上最大的栖息地,占全球生物圈体积的 99%,直接或间接支持着大多数海洋生物,并供应了人类消耗的大部分鱼类(Game 等,2009;Pauly 等,2002) 。然而,由于不可持续的捕捞,世界上层动物群正在全球范围内减少(Pauly & Zeller,2016)。在过去的半个世纪中,工业化捕捞使金枪鱼及其近亲的数量减少了 60%,使远洋鲨鱼和鳐鱼的数量减少了 71%(Juan-Jordá 等人,2011 年 Pacoureau 等人,2021 年)。中上层野生动物的减少削弱了生态系统的功能,导致生物多样性丧失,并破坏了世界上许多人的粮食安全和经济稳定。

受人类影响较小的海洋偏远地区是流动物种和重点目标物种的避难所。这些地区拥有多样性更高、数量更大、体型更大、生物量更大的野生动物群落,可以为生态过程提供有价值的见解(Campbell et al., 2020;Juhel et al., 2019;Thompson & Meeuwig, 2022)。偏远地区可以让我们一睹大规模人为影响之前海洋的面貌,这是海洋其他部分可以再生的来源,也是海洋保护区 (MPA) 和渔业管理的基准。然而,随着人类影响现已扩展到全球海洋(Halpern 等人,2008 年;Tickler 等人,2018 年),偏远地区受到的威胁日益严重。需要紧急关注,以确保偏远地区避免出现与人类更接近的地区类似的退化情况。

相对于浅海栖息地,我们对远洋海洋的了解仍然有限,这使得优先保护工作变得困难。在科学信息更加匮乏的偏远地区尤其如此。然而,我们确实知道,中上层物种与海山、海底峡谷和海洋岛屿等测深特征密切相关(Bouchet,2015;Morato 等,2010;Thompson 等,2021)。物理和生物驱动因素使这些特征成为远洋野生动物觅食、繁殖、导航和其他基本功能的重要场所(Garrigue 等,2015;Maguire 等,2023;Rogers,2018)。海山对于大型中上层动物尤其重要,通常拥有相对较高密度的受威胁和具有重要商业价值的物种,例如鲨鱼、金枪鱼和长嘴鱼,其中一些通常具有高度流动性,但在这些特征上表现出较高的栖息地(Morato 等人,2008 年) ;赖特等人,2021)。然而,这些物种的高经济价值和保守的生活史意味着捕鱼会迅速摧毁海山群落。因此,靠近人类的海山群落往往首先退化(Clark,1999)。

全球海洋中估计有 37,889 个海山,但只有不到 4% 已被调查(Yesson 等人,2021 年;图 1)。此外,不到 6% 位于受到全面且高度保护的海洋保护区(mpatlas.org;Grorud-Colvert 等人,2021)。因此,保护​​海山代表着一个重要的保护机会。重要的是,不同的测深结构支持不同的组合(Thompson 等人,2021),因此应包括一系列远程结构以确保代表性保护。保护地下特征将有利于中上层生物多样性,并为保护重要的底层鱼类组合(Galbraith等人,2021)和许多脆弱的底栖海洋生态系统(例如深礁群落)提供显着效益,因为它们在这些特征上更加集中(罗杰斯,2018)。许多海山,包括那些靠近人类种群的海山,具有显着的生物多样性保护价值(Morato 等,2010)。然而,我们认为,鉴于存在大量目标物种,这些地方对生物多样性做出了不成比例的贡献,以及我们对人类影响如何改变我们海洋的了解,迄今为止退化有限的偏远海山是保护的优先事项。

详细信息位于图片后面的标题中
图1
在图查看器中打开微软幻灯片软件
全球海洋保护区(浅绿色;UNEP-WCMC 和 IUCN,2022)与 Yesson 等人定义的全球海山分布(蓝色三角形)重叠。(2020)。这种分布显示了沿构造边界和海底地质活动部分的浓度。

精心设计和管理良好、高度保护的海洋保护区可以明显地阻止和扭转海洋野生动物的减少,增加邻近水域的渔业产量,并增强对气候变化的抵御能力(Edgar 等人,2014 年;Roberts等人,2017 年;Sala 和 Giakoumi) ,2018)。偏远和大规模保护的结合对于生物多样性保护特别有效(Juhel等人,2018),并且受到充分和高度保护的大型海洋保护区对专属经济区内的海山保护做出了重大贡献。有充分的科学证据表明,到 2030 年需要保护至少 30% 的陆地和海洋(Dinerstein 等人,2019 年;O'Leary 等人,2016 年),这是昆明-蒙特利尔全球生物多样性框架中做出的承诺,于 2022 年 12 月批准。联合国大会最近还制定了一项条约,以促进国家管辖范围以外区域海洋生物多样性的保护和可持续利用(ABNJs;斯托克斯塔德,2023 年;联合国大会,2023 年)。该文书为在 ABNJ 实施海洋保护区提供了法律框架。58% 的海山位于 ABNJ,其中不到 1% 位于高度保护的海洋保护区,偏远海山是履行生物多样性保护承诺的主要目标。此外,最近的多国条约已经认识到这些特征的重要性,并正在合作保护国内和国际水域的区域。例如,东热带太平洋海洋走廊(CMAR)倡议横跨哥斯达黎加、巴拿马、哥伦比亚和厄瓜多尔专属经济区(EEZ)的岛屿、海岸和海山链。秘鲁和智利还共同努力保护纳斯卡和萨拉斯戈麦斯海岭系统,该系统横跨两国专属经济区以及两国之间的国际水域(Wagner 等,2021)。这些进步步骤提供了清晰而积极的范例,说明各国之间的合作如何成为可能并可以保护宝贵的海洋栖息地。

日益增加的威胁和人们对自然世界重要性的日益认识,增强了全球保护自然环境的需求,并使其成为必要。偏远海山上层生物群的高密度生命和栖息地(通常具有高度流动性)使得这些地点容易遭受人为破坏,但也是理想的保护目标(Morato 等人,2010 年;Wright 等人,2021 年)。鉴于有大量证据表明偏远海山的重要性,对它们的保护是维持远洋野生动物种群的关键一步,并将造福于利用它们的许多物种,包括我们人类。

更新日期:2023-11-20
down
wechat
bug