当前位置:
X-MOL 学术
›
J. Non Equilib. Thermodyn.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-objective optimization of an endoreversible closed Atkinson cycle
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2023-11-24 , DOI: 10.1515/jnet-2023-0051 Zheng Gong 1, 2, 3 , Yanlin Ge 1, 2, 3 , Lingen Chen 1, 2, 3 , Huijun Feng 1, 2, 3
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2023-11-24 , DOI: 10.1515/jnet-2023-0051 Zheng Gong 1, 2, 3 , Yanlin Ge 1, 2, 3 , Lingen Chen 1, 2, 3 , Huijun Feng 1, 2, 3
Affiliation
Based on finite-time-thermodynamic theory and the model established in previous literature, the multi-objective optimization analysis for an endoreversible closed Atkinson cycle is conducted through using the NSGA-II algorithm. With the final state point temperature (T 2 ) of cycle compression process as the optimization variable and the thermal efficiency (η ), the dimensionless efficient power ( E ̄ P ${\bar{E}}_{P}$ ), the dimensionless ecological function ( E ̄ $\bar{E}$ ) and the dimensionless power ( P ̄ $\bar{P}$ ) as the optimization objectives, the influences of T 2 on the four optimization objectives are analyzed, multi-objective optimization analyses of single-, two-, three- and four-objective are conducted, and the optimal cycle optimization objective combination is chosen by using three decision-making methods which include LINMAP, TOPSIS, and Shannon Entropy. The result shows that when four-objective optimization is conducted, with the ascent of T 2 , P ̄ $\bar{P}$ descends, η ascends, both E ̄ $\bar{E}$ and E ̄ P ${\bar{E}}_{P}$ firstly ascend and then descend. In this situation, the deviation index is the smallest and equals to 0.2657 under the decision-making method of Shannon Entropy, so its optimization result is the optimal. The multi-objective optimization results are able to provide certain guidelines for the design of practical closed Atkinson cycle heat engine.
中文翻译:
内可逆闭合阿特金森循环的多目标优化
基于有限时间热力学理论和文献建立的模型,采用NSGA-II算法对内可逆封闭阿特金森循环进行多目标优化分析。终态点温度 (时间 2 )以循环压缩过程为优化变量,热效率(η ),无量纲有效功率( 乙 ̄ 磷 ${\bar{E}}_{P}$ ),无量纲生态函数( 乙 ̄ $\bar{E}$ )和无量纲功率( 磷 ̄ $\bar{P}$ )作为优化目标,影响时间 2 对四个优化目标进行分析,进行单目标、二目标、三目标、四目标的多目标优化分析,利用LINMAP、TOPSIS三种决策方法选择最优循环优化目标组合,和香农熵。结果表明,进行四目标优化时,随着时间 2 , 磷 ̄ $\bar{P}$ 下降,η 上升,两者 乙 ̄ $\bar{E}$ 和 乙 ̄ 磷 ${\bar{E}}_{P}$ 先上升后下降。此时,香农熵决策方法下的偏差指数最小,为0.2657,因此其优化结果最优。多目标优化结果可为实用的闭式阿特金森循环热机的设计提供一定的指导。
更新日期:2023-11-24
中文翻译:
内可逆闭合阿特金森循环的多目标优化
基于有限时间热力学理论和文献建立的模型,采用NSGA-II算法对内可逆封闭阿特金森循环进行多目标优化分析。终态点温度 (