当前位置:
X-MOL 学术
›
J. Comb. Theory B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dirac-type conditions for spanning bounded-degree hypertrees
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2023-11-22 , DOI: 10.1016/j.jctb.2023.11.002 Matías Pavez-Signé , Nicolás Sanhueza-Matamala , Maya Stein
中文翻译:
跨越有界度超树的狄拉克型条件
更新日期:2023-11-23
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2023-11-22 , DOI: 10.1016/j.jctb.2023.11.002 Matías Pavez-Signé , Nicolás Sanhueza-Matamala , Maya Stein
We prove that for fixed k, every k-uniform hypergraph on n vertices and of minimum codegree at least contains every spanning tight k-tree of bounded vertex degree as a subgraph. This generalises a well-known result of Komlós, Sárközy and Szemerédi for graphs. Our result is asymptotically sharp. We also prove an extension of our result to hypergraphs that satisfy some weak quasirandomness conditions.
中文翻译:
跨越有界度超树的狄拉克型条件
我们证明,对于固定k,每个k均匀超图在n 个顶点上且至少具有最小码度包含每个有界顶点度的生成紧k树作为子图。这概括了 Komlós、Sárközy 和 Szemerédi 对于图的著名结果。我们的结果是渐近尖锐的。我们还证明了我们的结果到满足一些弱拟随机性条件的超图的扩展。