当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spectroscopically Visualizing the Evolution of Hydrogen-Bonding Interactions
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-11-22 , DOI: 10.1021/jacs.3c08723 Xianfeng Yi 1 , Wei Chen 1 , Yao Xiao 1 , Fengqing Liu 1, 2 , Xin Yu 1, 2 , Anmin Zheng 1, 3
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-11-22 , DOI: 10.1021/jacs.3c08723 Xianfeng Yi 1 , Wei Chen 1 , Yao Xiao 1 , Fengqing Liu 1, 2 , Xin Yu 1, 2 , Anmin Zheng 1, 3
Affiliation
Understanding chemical bond variations is the soul of chemistry as it is essential for any chemical process. The evolution of hydrogen bonds is one of the most fundamental and emblematic events during proton transfer; however, its experimental visualization remains a formidable challenge because of the transient timescales. Herein, by subtly regulating the proton-donating ability of distinct proton donors (zeolites or tungstophosphoric acid), a series of different hydrogen-bonding configurations were precisely manipulated. Then, an advanced two-dimensional (2D) heteronuclear correlation nuclear magnetic resonance (NMR) spectroscopic technique was utilized to simultaneously monitor the electronic properties of proton donors and acceptors (2-13C-acetone or trimethylphosphine oxide) through chemical shifts. Parabolic 1H–13C NMR relationships combined with single-well and double-well potential energy surfaces derived from theoretical simulations quantitatively identified the hydrogen bond types and allowed the evolution of hydrogen bonds to be visualized in diverse acid–base interaction complexes during proton transfer. Our findings provide a new perspective to reveal the nature and evolution of hydrogen bonds and confirm the superiority of 2D NMR techniques in identifying the subtle distinctions of various hydrogen-bonding configurations.
中文翻译:
氢键相互作用演化的光谱可视化
了解化学键的变化是化学的灵魂,因为它对于任何化学过程都至关重要。氢键的演化是质子转移过程中最基本和最具象征意义的事件之一。然而,由于时间尺度短暂,其实验可视化仍然是一个巨大的挑战。在此,通过巧妙地调节不同质子供体(沸石或钨磷酸)的质子供体能力,精确地操纵了一系列不同的氢键构型。然后,利用先进的二维(2D)异核相关核磁共振(NMR)波谱技术通过化学位移同时监测质子供体和受体(2- 13 C-丙酮或三甲基膦氧化物)的电子特性。抛物线1 H- 13 C NMR 关系与理论模拟得出的单井和双井势能面相结合,定量识别了氢键类型,并使质子转移过程中不同酸碱相互作用复合物中氢键的演化可视化。我们的研究结果为揭示氢键的性质和演化提供了新的视角,并证实了二维核磁共振技术在识别各种氢键构型的细微差别方面的优越性。
更新日期:2023-11-22
中文翻译:
氢键相互作用演化的光谱可视化
了解化学键的变化是化学的灵魂,因为它对于任何化学过程都至关重要。氢键的演化是质子转移过程中最基本和最具象征意义的事件之一。然而,由于时间尺度短暂,其实验可视化仍然是一个巨大的挑战。在此,通过巧妙地调节不同质子供体(沸石或钨磷酸)的质子供体能力,精确地操纵了一系列不同的氢键构型。然后,利用先进的二维(2D)异核相关核磁共振(NMR)波谱技术通过化学位移同时监测质子供体和受体(2- 13 C-丙酮或三甲基膦氧化物)的电子特性。抛物线1 H- 13 C NMR 关系与理论模拟得出的单井和双井势能面相结合,定量识别了氢键类型,并使质子转移过程中不同酸碱相互作用复合物中氢键的演化可视化。我们的研究结果为揭示氢键的性质和演化提供了新的视角,并证实了二维核磁共振技术在识别各种氢键构型的细微差别方面的优越性。