当前位置:
X-MOL 学术
›
Comm. Pure Appl. Math.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Critical sets of solutions of elliptic equations in periodic homogenization
Communications on Pure and Applied Mathematics ( IF 3.1 ) Pub Date : 2023-11-20 , DOI: 10.1002/cpa.22186 Fanghua Lin 1 , Zhongwei Shen 2
Communications on Pure and Applied Mathematics ( IF 3.1 ) Pub Date : 2023-11-20 , DOI: 10.1002/cpa.22186 Fanghua Lin 1 , Zhongwei Shen 2
Affiliation
In this paper we study critical sets of solutions of second-order elliptic equations in divergence form with rapidly oscillating and periodic coefficients. Under some condition on the first-order correctors, we show that the -dimensional Hausdorff measures of the critical sets are bounded uniformly with respect to the period ε, provided that doubling indices for solutions are bounded. The key step is an estimate of “turning” of an approximate tangent map, the projection of a non-constant solution onto the subspace of spherical harmonics of order ℓ, when the doubling index for on a sphere is trapped between and , for r between 1 and a minimal radius . This estimate is proved by using harmonic approximation successively. With a suitable L2 renormalization as well as rescaling we are able to control the accumulated errors introduced by homogenization and projection. Our proof also gives uniform bounds for Minkowski contents of the critical sets.
中文翻译:
周期均匀化中椭圆方程的临界解集
在本文中,我们研究关键解决方案集具有快速振荡和周期系数的发散形式的二阶椭圆方程。在一阶校正器的某些条件下,我们证明临界集的维 Hausdorff 测度关于周期 ε 统一有界,前提是解的倍数指数有界。关键步骤是估计近似切线图的“转动”,即非恒定解的投影到ℓ阶球谐函数的子空间上,当倍数指数为在一个球体上被困在之间和,对于r介于 1 和最小半径之间。相继使用调和近似证明了这一估计。通过适当的L 2重整化以及重新缩放,我们能够控制由均质化和投影引入的累积误差。我们的证明还给出了关键集的闵可夫斯基内容的统一界限。
更新日期:2023-11-23
中文翻译:
周期均匀化中椭圆方程的临界解集
在本文中,我们研究关键解决方案集具有快速振荡和周期系数的发散形式的二阶椭圆方程。在一阶校正器的某些条件下,我们证明临界集的维 Hausdorff 测度关于周期 ε 统一有界,前提是解的倍数指数有界。关键步骤是估计近似切线图的“转动”,即非恒定解的投影到ℓ阶球谐函数的子空间上,当倍数指数为在一个球体上被困在之间和,对于r介于 1 和最小半径之间。相继使用调和近似证明了这一估计。通过适当的L 2重整化以及重新缩放,我们能够控制由均质化和投影引入的累积误差。我们的证明还给出了关键集的闵可夫斯基内容的统一界限。