当前位置:
X-MOL 学术
›
Sens. Actuators B Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Crystalline structure controlled of In2O3 sensing platforms for sensitive H2S performance at low temperature
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2023-11-21 , DOI: 10.1016/j.snb.2023.135026
Zhidong Jin , Yue Mou , Jinbo Zhao , Chuanzhi Chen , Huan Zhou , Nan Xiang , Fenglong Wang , Zhou Wang , Jiurong Liu , Lili Wu
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2023-11-21 , DOI: 10.1016/j.snb.2023.135026
Zhidong Jin , Yue Mou , Jinbo Zhao , Chuanzhi Chen , Huan Zhou , Nan Xiang , Fenglong Wang , Zhou Wang , Jiurong Liu , Lili Wu
![]() |
Regulation based on the crystalline structure modulations is capable of optimizing the band gap and chemisorbed oxygen components thus adjusting the gas sensing characteristics of sensing materials. Herein, InO hierarchical-assembled microspheres with diverse crystalline structures were synthesized via a simple hydrothermal method combined with calcinating procedure under different temperatures. The gas sensor based on rhombohedral InO (rh-InO) microspheres assembled by pine needle shaped nanorods annealed at 350 ℃ (350-InO) exhibited superior HS sensing performances at relative low operating temperature of 100 ℃ with low detection limit (50 ppb) and optimized stability compared with cubic InO (c-InO). Notably, HS sensing characteristics of InO samples with different crystalline structures certificated that crystal structures can dominate the HS sensing reactions with different mechanisms. This work enlightened a novel prospect for designing rh-InO based sensors and provides an innovative pathway for analyzing the feasible HS sensing mechanisms.
中文翻译:
In2O3 传感平台的晶体结构控制可实现低温下敏感的 H2S 性能
基于晶体结构调制的调节能够优化带隙和化学吸附的氧成分,从而调整传感材料的气体传感特性。在此,通过简单的水热法结合不同温度下的煅烧过程合成了具有不同晶体结构的InO分级组装微球。基于350℃退火松针形纳米棒组装的菱形InO(rh-InO)微球(350-InO)的气体传感器在100℃的相对较低工作温度下表现出优异的HS传感性能,检测限低(50ppb),并且与立方 InO (c-InO) 相比,稳定性得到优化。值得注意的是,具有不同晶体结构的 InO 样品的 H2S 传感特性证明晶体结构可以以不同的机制主导 H2S 传感反应。这项工作为设计基于rh-InO的传感器开辟了新的前景,并为分析可行的H2S传感机制提供了一条创新途径。
更新日期:2023-11-21
中文翻译:

In2O3 传感平台的晶体结构控制可实现低温下敏感的 H2S 性能
基于晶体结构调制的调节能够优化带隙和化学吸附的氧成分,从而调整传感材料的气体传感特性。在此,通过简单的水热法结合不同温度下的煅烧过程合成了具有不同晶体结构的InO分级组装微球。基于350℃退火松针形纳米棒组装的菱形InO(rh-InO)微球(350-InO)的气体传感器在100℃的相对较低工作温度下表现出优异的HS传感性能,检测限低(50ppb),并且与立方 InO (c-InO) 相比,稳定性得到优化。值得注意的是,具有不同晶体结构的 InO 样品的 H2S 传感特性证明晶体结构可以以不同的机制主导 H2S 传感反应。这项工作为设计基于rh-InO的传感器开辟了新的前景,并为分析可行的H2S传感机制提供了一条创新途径。