当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Semisimple algebras and PI-invariants of finite dimensional algebras
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2023-11-22 , DOI: 10.2140/ant.2024.18.133
Eli Aljadeff , Yakov Karasik

Let Γ be the T-ideal of identities of an affine PI-algebra over an algebraically closed field F of characteristic zero. Consider the family Γ of finite dimensional algebras Σ with Id (Σ) = Γ. By Kemer’s theory Γ is not empty. We show there exists A Γ with Wedderburn–Malcev decomposition AAss JA, where JA is the Jacobson’s radical and Ass is a semisimple supplement with the property that if BBss JB Γ then Ass is a direct summand of Bss. In particular Ass is unique minimal, thus an invariant of Γ. More generally, let Γ be the T-ideal of identities of a PI algebra and let 2,Γ be the family of finite dimensional superalgebras Σ with Id (E(Σ)) = Γ. Here E is the unital infinite dimensional Grassmann algebra and E(Σ) is the Grassmann envelope of Σ. Again, by Kemer’s theory 2,Γ is not empty. We prove there exists a superalgebra AAss JA 2,Γ such that if B 2,Γ, then Ass is a direct summand of Bss as superalgebras. Finally, we fully extend these results to the G-graded setting where G is a finite group. In particular we show that if A and B are finite dimensional G2 := 2 × G-graded simple algebras then they are G2-graded isomorphic if and only if E(A) and E(B) are G-graded PI-equivalent.



中文翻译:

有限维代数的半简单代数和 PI 不变量

γ成为时间- 代数闭域上仿射 PI 代数的理想恒等式F的特征为零。考虑家庭γ有限维代数ΣID Σ = γ。根据凯梅尔的理论γ不为空。我们证明存在A εγ韦德伯恩-马尔切夫分解AAss JA, 在哪里JA是 Jacobson 的激进式,Ass是一个半简单的补充,其性质是如果ss J εγ然后Ass是一个直接求和ss。尤其Ass是唯一最小的,因此是一个不变量γ。更一般地,让γ成为时间- PI 代数的理想恒等式,令2,γ是有限维超代数族ΣID Σ = γ。这里是单位无限维格拉斯曼代数,Σ是格拉斯曼包络Σ。再次,根据凯梅尔的理论2,γ不为空。我们证明存在一个超代数AAss JA ε2,γ这样如果 ε2,γ, 然后Ass是一个直接求和ss作为超代数。最后,我们将这些结果完全推广到G-分级设置,其中G是一个有限群。我们特别证明如果A是有限维的G2 = 2 × G-分级简单代数然后它们是G2- 分级同构当且仅当AG- 分级 PI 等效值。

更新日期:2023-11-22
down
wechat
bug