Algebra & Number Theory ( IF 0.9 ) Pub Date : 2023-11-22 , DOI: 10.2140/ant.2024.18.133 Eli Aljadeff , Yakov Karasik
Let be the -ideal of identities of an affine PI-algebra over an algebraically closed field of characteristic zero. Consider the family of finite dimensional algebras with . By Kemer’s theory is not empty. We show there exists with Wedderburn–Malcev decomposition , where is the Jacobson’s radical and is a semisimple supplement with the property that if then is a direct summand of . In particular is unique minimal, thus an invariant of . More generally, let be the -ideal of identities of a PI algebra and let be the family of finite dimensional superalgebras with . Here is the unital infinite dimensional Grassmann algebra and is the Grassmann envelope of . Again, by Kemer’s theory is not empty. We prove there exists a superalgebra such that if , then is a direct summand of as superalgebras. Finally, we fully extend these results to the -graded setting where is a finite group. In particular we show that if and are finite dimensional -graded simple algebras then they are -graded isomorphic if and only if and are -graded PI-equivalent.
中文翻译:
有限维代数的半简单代数和 PI 不变量
让成为- 代数闭域上仿射 PI 代数的理想恒等式的特征为零。考虑家庭有限维代数和。根据凯梅尔的理论不为空。我们证明存在韦德伯恩-马尔切夫分解, 在哪里是 Jacobson 的激进式,是一个半简单的补充,其性质是如果然后是一个直接求和。尤其是唯一最小的,因此是一个不变量。更一般地,让成为- PI 代数的理想恒等式,令是有限维超代数族和。这里是单位无限维格拉斯曼代数,是格拉斯曼包络。再次,根据凯梅尔的理论不为空。我们证明存在一个超代数这样如果, 然后是一个直接求和作为超代数。最后,我们将这些结果完全推广到-分级设置,其中是一个有限群。我们特别证明如果和是有限维的-分级简单代数然后它们是- 分级同构当且仅当和是- 分级 PI 等效值。