Molecular Horticulture Pub Date : 2023-11-22 , DOI: 10.1186/s43897-023-00071-2 Yanshen Ren 1 , Shuangyu Zhang 1 , Qianyi Zhao 1 , Yang Wu 1 , Houhua Li 1
Drought stress has been demonstrated to enhance the biosynthesis of anthocyanins in the leaves, resulting in an increased aesthetic appeal. However, the molecular mechanisms underlying drought-induced anthocyanin biosynthesis in Chaenomeles speciosa remain unclear. In this study, the metabolites of C. speciosa leaves were analyzed, and it was found that the content of cyanidin-3-O-rutinoside increased significantly under drought stress. The differentially expressed genes CsMYB123 and CsbHLH111 were isolated by transcriptomics data analysis and gene cloning, and gene overexpression and VIGS experiments verified that both play important roles in anthocyanin biosynthesis. Subsequently, Y1H and Dual-luciferase reporter assay showed that CsMYB123 binds to the promoters of anthocyanin biosynthesis-related structural genes (such as CsCHI, CsF3H, and CsANS), while CsbHLH111 was shown to bind to the promoter of CsCHI, positively regulating its activity. Furthermore, BIFC and Y2H assays unveiled potential protein–protein interactions between CsMYB123 and CsbHLH111 at the cell nucleus. Collectively, these results shed light on the critical roles played by CsMYB123 and CsbHLH111 in anthocyanin biosynthesis, thus providing a valuable insight into understanding the molecular mechanisms of how the MYB and bHLH genes regulate anthocyanin biosynthesis in the process of leaf coloration in C. speciosa.
Graphical Abstract
中文翻译:
CsMYB123 和 CsbHLH111 参与木瓜干旱胁迫诱导的花青素生物合成
干旱胁迫已被证明可以增强叶子中花青素的生物合成,从而增加审美吸引力。然而,干旱诱导木瓜花青素生物合成的分子机制仍不清楚。本研究对大花锦鸡叶的代谢产物进行了分析,发现干旱胁迫下花青素-3- O-芸香苷含量显着增加。通过转录组学数据分析和基因克隆分离出差异表达基因CsMYB123和CsbHLH111 ,并通过基因过表达和VIGS实验验证两者在花青素生物合成中发挥重要作用。随后,Y1H和双荧光素酶报告基因检测表明,CsMYB123与花青素生物合成相关结构基因(如CsCHI、CsF3H和CsANS)的启动子结合,而CsbHLH111与CsCHI的启动子结合,正向调节其活性。此外,BIFC 和 Y2H 检测揭示了细胞核中 CsMYB123 和 CsbHLH111 之间潜在的蛋白质-蛋白质相互作用。总的来说,这些结果揭示了CsMYB123和CsbHLH111在花青素生物合成中所起的关键作用,从而为了解 MYB 和 bHLH 基因如何在C. spiosa叶片着色过程中调节花青素生物合成的分子机制提供了有价值的见解。