当前位置:
X-MOL 学术
›
Annu. Rev. Condens. Matter Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Superdiffusion from Nonabelian Symmetries in Nearly Integrable Systems
Annual Review of Condensed Matter Physics ( IF 14.3 ) Pub Date : 2023-11-21 , DOI: 10.1146/annurev-conmatphys-032922-110710 Sarang Gopalakrishnan 1 , Romain Vasseur 2
Annual Review of Condensed Matter Physics ( IF 14.3 ) Pub Date : 2023-11-21 , DOI: 10.1146/annurev-conmatphys-032922-110710 Sarang Gopalakrishnan 1 , Romain Vasseur 2
Affiliation
The Heisenberg spin chain is a canonical integrable model. As such, it features stable ballistically propagating quasiparticles, but spin transport is subballistic at any nonzero temperature: An initially localized spin fluctuation spreads in time t to a width t2/3 . This exponent as well as the functional form of the dynamical spin correlation function suggest that spin transport is in the Kardar–Parisi–Zhang (KPZ) universality class. However, the full counting statistics of magnetization is manifestly incompatible with KPZ scaling. A simple two-mode hydrodynamic description, derivable from microscopic principles, captures both the KPZ scaling of the correlation function and the coarse features of the full counting statistics, but remains to be numerically validated. These results generalize to any integrable spin chain invariant under a continuous nonabelian symmetry and are surprisingly robust against moderately strong integrability-breaking perturbations that respect the nonabelian symmetry.
中文翻译:
来自几乎可积系统中 Nonabelian 对称性的超扩散
Heisenberg 自旋链是一个规范的可积模型。因此,它具有稳定的弹道传播准粒子,但在任何非零温度下,自旋传输都是亚弹道的:最初局部的自旋波动在时间 t 中传播到宽度 t2/3。该指数以及动态自旋相关函数的函数形式表明自旋传输属于 Kardar-Parisi-Zhang (KPZ) 普遍性类。然而,磁化强度的全计数统计显然与 KPZ 缩放不兼容。从微观原理推导出一个简单的双模态流体动力学描述,既捕获了相关函数的 KPZ 缩放,也捕获了完整计数统计的粗略特征,但仍有待数值验证。这些结果推广到连续非阿贝尔对称性下的任何可积自旋链不变性,并且对尊重非阿贝尔对称性的中等强度的可积性破坏扰动具有惊人的鲁棒性。
更新日期:2023-11-21
中文翻译:
来自几乎可积系统中 Nonabelian 对称性的超扩散
Heisenberg 自旋链是一个规范的可积模型。因此,它具有稳定的弹道传播准粒子,但在任何非零温度下,自旋传输都是亚弹道的:最初局部的自旋波动在时间 t 中传播到宽度 t2/3。该指数以及动态自旋相关函数的函数形式表明自旋传输属于 Kardar-Parisi-Zhang (KPZ) 普遍性类。然而,磁化强度的全计数统计显然与 KPZ 缩放不兼容。从微观原理推导出一个简单的双模态流体动力学描述,既捕获了相关函数的 KPZ 缩放,也捕获了完整计数统计的粗略特征,但仍有待数值验证。这些结果推广到连续非阿贝尔对称性下的任何可积自旋链不变性,并且对尊重非阿贝尔对称性的中等强度的可积性破坏扰动具有惊人的鲁棒性。