当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using Highly Electronegative Zn to Regulate the Superlattice Structure for the Na-Ion Layered Oxide Cathode with Superior Electrochemical Performance
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-11-20 , DOI: 10.1021/acsami.3c10991
De Fang 1 , Jiameng Feng 1 , Jie Li 1 , Jianling Li 1
Affiliation  

The introduction of a superlattice structure into layered oxide cathode materials is a novel strategy to improve the structural stability of sodium-ion batteries (SIBs). However, the superlattice structure gradually disappears during cycling, which shortens the long life of SIBs. Here, the highly electronegative Zn is introduced into a P2-type layered oxide to regulate the superlattice structure. The obtained P2–Na0.80Li0.13Ni0.20Zn0.03Mn0.64O2 exhibits excellent cycling performance (the capacity retention is 96.7% after 100 cycles at 0.5C) and rate capability (95.8 mAh g–1 at 5C). Zn effectively inhibits the Li migration and the Mn dissolution, which ensures the integrity of the Li/Mn superlattice structure during long cycling, thus achieving an ultralong cycling life of SIBs. The introduction of Zn dramatically increases the length of the c-axis, leading to a faster de-embedding rate of Na+ and a better diffusion kinetics. Meanwhile, the larger pristine volume can withstand more stress/strain due to the sharp increase in the level of O–O repulsion during the desodiation process. In addition, Raman test results show that Zn can inhibit the Na+/vacancy ordering transition and improve the structural stability. This study confirms the feasibility of a Zn-regulated superlattice structure. It provides inspiration for the construction of stable layered oxide cathode materials for SIBs.

中文翻译:


利用高负电性锌调控超晶格结构以获得具有优异电化学性能的钠离子层状氧化物阴极



将超晶格结构引入层状氧化物正极材料是提高钠离子电池(SIB)结构稳定性的一种新策略。然而,超晶格结构在循环过程中逐渐消失,这缩短了SIB的长寿命。在这里,高负电性的Zn被引入到P2型层状氧化物中以调节超晶格结构。所得P2–Na 0.80 Li 0.13 Ni 0.20 Zn 0.03 Mn 0.64 O 2表现出优异的循环性能(在0.5C下100次循环后容量保持率为96.7%)和倍率性能(在5C下为95.8 mAh g –1 )。 Zn有效抑制Li迁移和Mn溶解,保证了长循环过程中Li/Mn超晶格结构的完整性,从而实现SIB的超长循环寿命。 Zn 的引入显着增加了c轴的长度,从而导致 Na +更快的脱嵌速率和更好的扩散动力学。同时,由于脱钠过程中 O-O 排斥水平急剧增加,较大的原始体积可以承受更多的应力/应变。此外,拉曼测试结果表明,Zn可以抑制Na + /空位有序转变,提高结构稳定性。这项研究证实了锌调节超晶格结构的可行性。它为构建用于SIB的稳定层状氧化物正极材料提供了灵感。
更新日期:2023-11-20
down
wechat
bug