Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-11-16 , DOI: 10.1016/j.jcta.2023.105833 Hau-Wen Huang
The universal enveloping algebra of is a unital associative algebra over generated by subject to the relations The element is called the Casimir element of . Let denote the comultiplication of . The universal Hahn algebra is a unital associative algebra over generated by and the relations assert that and each of is central in . Inspired by the Clebsch–Gordan coefficients of , we discover an algebra homomorphism that maps By pulling back via ♮ any -module can be considered as an -module. For any integer there exists a unique -dimensional irreducible -module up to isomorphism. We study the decomposition of the -module for any integers . We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.
中文翻译:
U(sl2) 的 Clebsch-Gordan 系数和 Johnson 图的 Terwilliger 代数
通用包络代数的是一个酉结合代数产生于受关系的影响元素称为卡西米尔元素。让表示共乘。通用哈恩代数是一个酉结合代数产生于并且关系断言和每个是中心于。受到 Clebsch-Gordan 系数的启发,我们发现代数同态那个地图通过 ♮ 任意拉回- 模块可以被认为是-模块。对于任意整数存在着一个独特的维数不可约-模块直至同构。我们研究了分解-模块对于任意整数。我们将这些结果与约翰逊图的 Terwilliger 代数联系起来。我们用二项式系数表示约翰逊图的特威利格代数的维数。