当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Clebsch–Gordan coefficients of U(sl2) and the Terwilliger algebras of Johnson graphs
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-11-16 , DOI: 10.1016/j.jcta.2023.105833
Hau-Wen Huang

The universal enveloping algebra U(sl2) of sl2 is a unital associative algebra over C generated by E,F,H subject to the relations[H,E]=2E,[H,F]=2F,[E,F]=H. The elementΛ=EF+FE+H22 is called the Casimir element of U(sl2). Let Δ:U(sl2)U(sl2)U(sl2) denote the comultiplication of U(sl2). The universal Hahn algebra H is a unital associative algebra over C generated by A,B,C and the relations assert that [A,B]=C and each of[C,A]+2A2+B,[B,C]+4BA+2C is central in H. Inspired by the Clebsch–Gordan coefficients of U(sl2), we discover an algebra homomorphism :HU(sl2)U(sl2) that mapsAH11H4,BΔ(Λ)2,CEFFE. By pulling back via ♮ any U(sl2)U(sl2)-module can be considered as an H-module. For any integer n0 there exists a unique (n+1)-dimensional irreducible U(sl2)-module Ln up to isomorphism. We study the decomposition of the H-module LmLn for any integers m,n0. We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.



中文翻译:

U(sl2) 的 Clebsch-Gordan 系数和 Johnson 图的 Terwilliger 代数

通用包络代数U斯尔2斯尔2是一个酉结合代数C产生于,F,H受关系的影响[H,]=2,[H,F]=-2F,[,F]=H元素Λ=F+F+H22称为卡西米尔元素U斯尔2。让ΔU斯尔2U斯尔2U斯尔2表示共乘U斯尔2。通用哈恩代数H是一个酉结合代数C产生于A,,C并且关系断言[A,]=C和每个[C,A]+2A2+,[,C]+4A+2C是中心于H。受到 Clebsch-Gordan 系数的启发U斯尔2,我们发现代数同态HU斯尔2U斯尔2那个地图AH1-1H4,ΔΛ2,CF-F通过 ♮ 任意拉回U斯尔2U斯尔2- 模块可以被认为是H-模块。对于任意整数n0存在着一个独特的n+1维数不可约U斯尔2-模块Ln直至同构。我们研究了分解H-模块LLn对于任意整数,n0。我们将这些结果与约翰逊图的 Terwilliger 代数联系起来。我们用二项式系数表示约翰逊图的特威利格代数的维数。

更新日期:2023-11-20
down
wechat
bug