当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Na+ Preintercalated MoO3 Microrods for Aqueous Zinc/Sodium Batteries with Enhanced Performance
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-11-16 , DOI: 10.1021/acsami.3c11398 Jiasheng Yue 1 , Shi Chen 1 , Yahui Wang 1 , Anqi Zhang 1 , Shuqiang Li 1 , Xiaomin Han 1 , Zhifan Hu 1 , Ran Zhao 1 , Chuan Wu 1, 2 , Ying Bai 1, 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-11-16 , DOI: 10.1021/acsami.3c11398 Jiasheng Yue 1 , Shi Chen 1 , Yahui Wang 1 , Anqi Zhang 1 , Shuqiang Li 1 , Xiaomin Han 1 , Zhifan Hu 1 , Ran Zhao 1 , Chuan Wu 1, 2 , Ying Bai 1, 2
Affiliation
Layered molybdenum trioxide (MoO3) is being investigated as a cathode material with high theoretical capacity and holds promise for aqueous secondary batteries. Unfortunately, the severe structural degradation of MoO3 and insufficient intrinsic properties hinder its practical application. Herein, a Na+ preintercalation strategy is reported as an effective method to construct cathodes with high performance for aqueous zinc/sodium batteries (AZSBs). Compared with pristine MoO3, the Na+ preintercalated Na0.25MoO3 cathode delivers a reversible capacity of 251.1 mAh g–1 at 1 A g–1, achieves a capacity retention of 79.2% after 500 cycles, and exhibits a high rate capability (121.5 mAh g–1 at 20 A g–1), which is superior to that in most of the previous reports. Through the experimental measurements and density functional theory (DFT) calculations, the preintercalation method could shorten the forbidden band gap and modulate the electronic structure and hence effectively inhibit the structural collapse of MoO3 microrods, induce reversible Na+ insertion, and enhance the discharge potential. This work is of significance for further research on molybdenum-based compounds as cathode materials for aqueous secondary batteries.
中文翻译:
用于性能增强的水系锌/钠电池的 Na+ 预插层 MoO3 微棒
层状三氧化钼(MoO 3)作为具有高理论容量的正极材料正在被研究,并有望用于水系二次电池。不幸的是,MoO 3严重的结构退化和不足的固有性能阻碍了其实际应用。在此,Na +预嵌入策略被报道为构建高性能水性锌/钠电池(AZSB)阴极的有效方法。与原始MoO 3相比,Na +预插层Na 0.25 MoO 3正极在1 A g –1下可逆容量为251.1 mAh g –1,500次循环后容量保持率为79.2%,并表现出高倍率性能( 121.5 mAh g –1 (20 A g –1 ),优于之前大多数报告中的值。通过实验测量和密度泛函理论(DFT)计算,预插层方法可以缩短禁带宽度并调节电子结构,从而有效抑制MoO 3微棒的结构塌陷,诱导可逆Na +插入,并增强放电电位。该工作对于进一步研究钼基化合物作为水系二次电池正极材料具有重要意义。
更新日期:2023-11-16
中文翻译:
用于性能增强的水系锌/钠电池的 Na+ 预插层 MoO3 微棒
层状三氧化钼(MoO 3)作为具有高理论容量的正极材料正在被研究,并有望用于水系二次电池。不幸的是,MoO 3严重的结构退化和不足的固有性能阻碍了其实际应用。在此,Na +预嵌入策略被报道为构建高性能水性锌/钠电池(AZSB)阴极的有效方法。与原始MoO 3相比,Na +预插层Na 0.25 MoO 3正极在1 A g –1下可逆容量为251.1 mAh g –1,500次循环后容量保持率为79.2%,并表现出高倍率性能( 121.5 mAh g –1 (20 A g –1 ),优于之前大多数报告中的值。通过实验测量和密度泛函理论(DFT)计算,预插层方法可以缩短禁带宽度并调节电子结构,从而有效抑制MoO 3微棒的结构塌陷,诱导可逆Na +插入,并增强放电电位。该工作对于进一步研究钼基化合物作为水系二次电池正极材料具有重要意义。