当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing Oxygen Evolution Reaction by Simultaneously Triggering Metal and Lattice Oxygen Redox Pair in Iridium Loading on Ni-Doped Co3O4
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-10-02 , DOI: 10.1002/aenm.202302537 Ansheng Wang 1, 2 , Wanying Wang 1, 2 , Jinchao Xu 1, 2 , Ao Zhu 1, 2 , Chunning Zhao 1, 2 , Meng Yu 1, 2 , Guoliang Shi 3 , Jiaguo Yan 4 , Shuhui Sun 5 , Weichao Wang 1, 2, 3
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-10-02 , DOI: 10.1002/aenm.202302537 Ansheng Wang 1, 2 , Wanying Wang 1, 2 , Jinchao Xu 1, 2 , Ao Zhu 1, 2 , Chunning Zhao 1, 2 , Meng Yu 1, 2 , Guoliang Shi 3 , Jiaguo Yan 4 , Shuhui Sun 5 , Weichao Wang 1, 2, 3
Affiliation
Since the active sites in catalytic systems are either metal sites or lattice oxygen, simultaneously triggering metal and lattice oxygen redox pair with low energy barriers is expected to provide diversified and efficient sites to accelerate oxygen evolution reaction (OER) kinetics, but this is a great challenge. Herein, Ir species (Ir clusters and Ir single atoms) loaded on Ni-doped Co3O4 is designed (Ir/Ni-Co3O4), where metallic Ir clusters downsize to spread into high-density Ir single atoms to load on reconstruction-derived Ni-doped CoOOH. In situ spectroscopy, isotope-labeled, and chemical probe experiments demonstrate that metal site and lattice oxygen are simultaneously activated to participate in the OER. Further theoretical studies demonstrate that the Co site is the most favorable site to promote the OER through an adsorbate evolution mechanism with a low energy barrier of 1.69 eV. The Ni cooperating with Ir atoms synergistically upshifts energy positions of the O p band centers. Thus, the lattice O that bridges Ni and Ir atoms is activated to participate in the OER via coupling with adsorbed O on the Ir site to fulfill O─O bond formation. Benefiting from the conjoint participation of the metal and lattice oxygen redox pair, Ir/Ni-Co3O4 affords extremely low OER overpotentials of 177 and 263 mV at corresponding 10 and 500 mA cm−2.
中文翻译:
Ni掺杂Co3O4上铱负载中同时触发金属和晶格氧氧化还原对增强析氧反应
由于催化体系中的活性位点要么是金属位点,要么是晶格氧,同时触发具有低能垒的金属和晶格氧氧化还原对有望提供多样化和有效的位点来加速析氧反应(OER)动力学,但这是一个很好的方法。挑战。本文设计了负载在Ni掺杂Co 3 O 4上的Ir物种(Ir团簇和Ir单原子)(Ir/Ni-Co 3 O 4),其中金属Ir团簇缩小尺寸以扩散成高密度Ir单原子来负载重建衍生的 Ni 掺杂 CoOOH。原位光谱、同位素标记和化学探针实验表明金属位点和晶格氧同时被激活参与OER。进一步的理论研究表明,Co位点是通过吸附质演化机制促进OER的最有利位点,其能垒为1.69 eV。Ni与Ir原子协同作用使O p带中心的能量位置上移。因此,桥接 Ni 和 Ir 原子的晶格 O 被激活,通过与 Ir 位点上吸附的 O 偶联来参与 OER,从而形成 O─O 键。受益于金属和晶格氧氧化还原对的共同参与,Ir/Ni-Co 3 O 4在相应的10和500 mA cm -2下提供了177和263 mV的极低OER过电势。
更新日期:2023-10-02
中文翻译:
Ni掺杂Co3O4上铱负载中同时触发金属和晶格氧氧化还原对增强析氧反应
由于催化体系中的活性位点要么是金属位点,要么是晶格氧,同时触发具有低能垒的金属和晶格氧氧化还原对有望提供多样化和有效的位点来加速析氧反应(OER)动力学,但这是一个很好的方法。挑战。本文设计了负载在Ni掺杂Co 3 O 4上的Ir物种(Ir团簇和Ir单原子)(Ir/Ni-Co 3 O 4),其中金属Ir团簇缩小尺寸以扩散成高密度Ir单原子来负载重建衍生的 Ni 掺杂 CoOOH。原位光谱、同位素标记和化学探针实验表明金属位点和晶格氧同时被激活参与OER。进一步的理论研究表明,Co位点是通过吸附质演化机制促进OER的最有利位点,其能垒为1.69 eV。Ni与Ir原子协同作用使O p带中心的能量位置上移。因此,桥接 Ni 和 Ir 原子的晶格 O 被激活,通过与 Ir 位点上吸附的 O 偶联来参与 OER,从而形成 O─O 键。受益于金属和晶格氧氧化还原对的共同参与,Ir/Ni-Co 3 O 4在相应的10和500 mA cm -2下提供了177和263 mV的极低OER过电势。