当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ionic-cellulose-adhesive modulated aqueous electrolyte enables water-poor and stable anion-derived electrolyte interphase for durable and dendrite-free zinc metal batteries
Nano Energy ( IF 16.8 ) Pub Date : 2023-11-15 , DOI: 10.1016/j.nanoen.2023.109094 Yunxiong Song , Weiyi Lu , Hao Yang , Chen Wu , Weifeng Wei , Guichao Kuang , Yuejiao Chen , Libao Chen , Xiaoping Ouyang
Nano Energy ( IF 16.8 ) Pub Date : 2023-11-15 , DOI: 10.1016/j.nanoen.2023.109094 Yunxiong Song , Weiyi Lu , Hao Yang , Chen Wu , Weifeng Wei , Guichao Kuang , Yuejiao Chen , Libao Chen , Xiaoping Ouyang
The development of aqueous zinc-ion batteries (ZIBs) as attractive candidates is largely limited by the unstable anode/electrolyte interface (AEI), which causes dendrite formation and by-products. Here, an inexpensive ionic cellulose adhesive, carboxymethylcellulose sodium (CMC), is utilized as an interface stabilizer to controllably manipulate the AEI for reversible Zn plating/stripping behaviors. The CMC derived anions have a propensity to initially gather on the Zn surface, forming a unique H2 O-poor and CMC- -rich electrical double layer (EDL) for relieving the water-induced side reactions and promoting fast Zn2+ transport kinetics. Meanwhile, an adaptive solid electrolyte interphase (SEI) can be triggered during cycling to further tune interfacial Zn2+ deposition behaviors. Such a combination enables exposure of (002) facets with dendrite-free and compact Zn deposition on Zn metal. Accordingly, the Zn//Zn symmetric cells with CMC-based electrolyte achieve outstanding lifespan with a 26-fold enhancement for 3125 h at 1 mA cm−2 and 1 mA h cm−2 . Also, the Zn anode is promoted to run over 4000 cycles with high Zn reversibility of 99.7%. When paired with NaV3 O8 ·1.5 H2 O (NVO) cathode, the full cell with CMC achieves a prominent stability for 2500 cycles at 3 A g−1 , much better than that in pure ZnSO4 electrolyte.
中文翻译:
离子纤维素粘合剂调制的水性电解质可实现贫水且稳定的阴离子衍生电解质界面,从而实现耐用且无枝晶的锌金属电池
水性锌离子电池(ZIB)作为有吸引力的候选者的发展在很大程度上受到不稳定的阳极/电解质界面(AEI)的限制,该界面会导致枝晶形成和副产物。在这里,一种廉价的离子纤维素粘合剂羧甲基纤维素钠(CMC)被用作界面稳定剂来可控地操纵AEI以实现可逆的镀锌/剥离行为。 CMC 衍生的阴离子倾向于首先聚集在 Zn 表面,形成独特的贫水和富含 CMC 的双电层 (EDL),用于缓解水引起的副反应并促进快速 Zn2+ 传输动力学。同时,在循环过程中可以触发自适应固体电解质界面(SEI),以进一步调整界面 Zn2+ 沉积行为。这种组合使得能够暴露(002)面,并在锌金属上沉积无枝晶和致密的锌。因此,采用基于 CMC 的电解质的 Zn//Zn 对称电池实现了出色的寿命,在 1 mA cm−2 和 1 mA h cm−2 下寿命延长了 26 倍,达到 3125 小时。此外,锌阳极可循环运行超过4000次,锌可逆性高达99.7%。当与 NaV3O8·1.5 H2O (NVO) 正极配合使用时,带有 CMC 的全电池在 3 A g−1 下实现了 2500 次循环的显着稳定性,远优于纯 ZnSO4 电解质。
更新日期:2023-11-15
中文翻译:
离子纤维素粘合剂调制的水性电解质可实现贫水且稳定的阴离子衍生电解质界面,从而实现耐用且无枝晶的锌金属电池
水性锌离子电池(ZIB)作为有吸引力的候选者的发展在很大程度上受到不稳定的阳极/电解质界面(AEI)的限制,该界面会导致枝晶形成和副产物。在这里,一种廉价的离子纤维素粘合剂羧甲基纤维素钠(CMC)被用作界面稳定剂来可控地操纵AEI以实现可逆的镀锌/剥离行为。 CMC 衍生的阴离子倾向于首先聚集在 Zn 表面,形成独特的贫水和富含 CMC 的双电层 (EDL),用于缓解水引起的副反应并促进快速 Zn2+ 传输动力学。同时,在循环过程中可以触发自适应固体电解质界面(SEI),以进一步调整界面 Zn2+ 沉积行为。这种组合使得能够暴露(002)面,并在锌金属上沉积无枝晶和致密的锌。因此,采用基于 CMC 的电解质的 Zn//Zn 对称电池实现了出色的寿命,在 1 mA cm−2 和 1 mA h cm−2 下寿命延长了 26 倍,达到 3125 小时。此外,锌阳极可循环运行超过4000次,锌可逆性高达99.7%。当与 NaV3O8·1.5 H2O (NVO) 正极配合使用时,带有 CMC 的全电池在 3 A g−1 下实现了 2500 次循环的显着稳定性,远优于纯 ZnSO4 电解质。