当前位置: X-MOL 学术Finite Elem. Anal. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geometrically nonlinear analysis of Reissner–Mindlin plates using multi-patch isogeometric analysis based on Nitsche’s method
Finite Elements in Analysis and Design ( IF 3.5 ) Pub Date : 2023-11-16 , DOI: 10.1016/j.finel.2023.104086
Ziling Song , Hirshikesh , Tiantang Yu , Sundararajan Natarajan

Within the isogeometric analysis framework, industrial products or complex shapes are represented using multiple NURBS patches, resulting in non-matching interfaces and introducing additional numerical challenges, particularly in scenarios involving nonlinear behavior. This paper introduces the application of Nitsche’s method to address interface coupling challenges presented in non-matching multi-patch configurations. A detailed formulation addressing geometric non-linearity in multiple Reissner–Mindlin plates is developed, and the resulting nonlinear equations are solved using the Newton–Raphson approach. The proposed formulation’s effectiveness is demonstrated by a series of numerical examples involving complex geometries represented by multi-patches with non-matching interfaces. These examples are validated against the analytical solutions and results obtained using the commercial finite element package, Abaqus.



中文翻译:

使用基于 Nitsche 方法的多面片等几何分析对 Reissner-Mindlin 板进行几何非线性分析

在等几何分析框架内,工业产品或复杂形状使用多个 NURBS 面片表示,导致界面不匹配并引入额外的数值挑战,特别是在涉及非线性行为的场景。本文介绍了 Nitsche 方法的应用,以解决不匹配多补丁配置中出现的接口耦合挑战。开发了解决多个 Reissner-Mindlin 板中几何非线性的详细公式,并使用 Newton-Raphson 方法求解所得非线性方程。一系列数值示例证明了所提出的公式的有效性,这些示例涉及由具有不匹配界面的多面片表示的复杂几何形状。这些示例针对使用商业有限元软件包Abaqus获得的分析解和结果进行了验证

更新日期:2023-11-16
down
wechat
bug