当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A modular approach to Andrews-Beck partition statistics
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2023-11-15 , DOI: 10.1016/j.jcta.2023.105832
Renrong Mao

Andrews recently provided a q-series proof of congruences for NT(m,k,n), the total number of parts in the partitions of n with rank congruent to m modulo k. Motivated by Andrews' works, Chern obtain congruences for Mω(m,k,n) which denotes the total number of ones in the partition of n with crank congruent to m modulo k. In this paper, we focus on the modular approach to these new partition statistics. Applying the theory of mock modular forms, we establish equalities and identities for NT(m,7,n) and Mω(m,7,n).



中文翻译:

Andrews-Beck 分区统计的模块化方法

安德鲁斯最近提供了q系列同余证明时间,k,n, n的分区中的部分总数,其秩与mk一致。受安德鲁斯作品的启发,陈省身获得了以下同余式:中号ω,k,n它表示n的分区中 1 的总数,曲柄与mk一致。在本文中,我们重点关注这些新分区统计信息的模块化方法。应用模拟模块化形式的理论,我们建立了等式和恒等式时间,7,n中号ω,7,n

更新日期:2023-11-15
down
wechat
bug