当前位置:
X-MOL 学术
›
IMA J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Weak error analysis for strong approximation schemes of SDEs with super-linear coefficients
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2023-11-11 , DOI: 10.1093/imanum/drad083 Xiaojie Wang 1 , Yuying Zhao 1, 2 , Zhongqiang Zhang 2
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2023-11-11 , DOI: 10.1093/imanum/drad083 Xiaojie Wang 1 , Yuying Zhao 1, 2 , Zhongqiang Zhang 2
Affiliation
We present an error analysis of weak convergence of one-step numerical schemes for stochastic differential equations (SDEs) with super-linearly growing coefficients. Following Milstein’s weak error analysis on the one-step approximation of SDEs, we prove a general result on weak convergence of the one-step discretization of the SDEs mentioned above. As applications, we show the weak convergence rates for several numerical schemes of half-order strong convergence, such as tamed and balanced schemes. Numerical examples are presented to verify our theoretical analysis.
中文翻译:
超线性系数SDE强逼近格式的弱误差分析
我们提出了一种对具有超线性增长系数的随机微分方程(SDE)的一步数值格式的弱收敛性的误差分析。继Milstein对SDE的一步逼近的弱误差分析之后,我们证明了上述SDE的一步离散化弱收敛的一般结果。作为应用,我们展示了几种半阶强收敛数值格式的弱收敛率,例如驯服格式和平衡格式。给出了数值例子来验证我们的理论分析。
更新日期:2023-11-11
中文翻译:
超线性系数SDE强逼近格式的弱误差分析
我们提出了一种对具有超线性增长系数的随机微分方程(SDE)的一步数值格式的弱收敛性的误差分析。继Milstein对SDE的一步逼近的弱误差分析之后,我们证明了上述SDE的一步离散化弱收敛的一般结果。作为应用,我们展示了几种半阶强收敛数值格式的弱收敛率,例如驯服格式和平衡格式。给出了数值例子来验证我们的理论分析。