当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Active Regulation Volume Change of Micrometer-Size Li2S Cathode with High Materials Utilization for All-Solid-State Li/S Batteries through an Interfacial Redox Mediator
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-11-12 , DOI: 10.1002/adfm.202306939
Peiwen Yu 1 , Shaorui Sun 2 , Chunhao Sun 3 , Chaoyuan Zeng 4 , Ze Hua 5 , Niaz Ahmad 1, 4 , Ruiwen Shao 6 , Wen Yang 1
Affiliation  

Low electronic and ionic transport, limited cathode active material utilization, and significant volume change have pledged the practical application of all-solid-state Li/S batteries (ASSLSBs). Herein, an unprecedented Li2S-LixIn2S3 cathode is designed whereby In2S3 reacts with Li2S under high-energy ball milling. In situ electron diffraction and ex situ XPS are implanted to probe the reaction mechanism of Li2S-LixIn2S3 in ASSLSBs. The results indicate that LixIn2S3 serves as a mobility mediator for both charge-carriers (Li+ and e) and redox mediator for Li2S activation, ensuring efficient electronic and ionic transportation at the cathode interface and inhibiting ≈ 70% relative volumetric change in the cathode, as confirmed by in situ TEM. Thus, the Li2S-LixIn2S3 cathode delivers an initial areal capacity of 3.47 mAh cm−2 at 4.0 mgLi2S cm−2 with 78% utilization of Li2S. A solid-state cell with Li2S-LixIn2S3 cathode carries 82.35% capacity retention over 200 cycles at 0.192 mA cm−2 and a remarkable rate capability up to 0.64 mA cm−2 at RT. Besides, Li2S-LixIn2S3 exhibits the highest initial areal capacity of 4.08 mAh cm−2 with ≈74.01% capacity retention over 50 cycles versus 6.6 mgLi2S cm−2 at 0.192 mA cm−2 at RT. The proposed strategy of the redox mediator minimized volumetric change and realized outstanding electrochemical performance for ASSLSBs.

中文翻译:

通过界面氧化还原介体主动调节全固态锂/硫电池高材料利用率微米尺寸Li2S正极的体积变化

低电子和离子传输、有限的正极活性材料利用率以及显着的体积变化保证了全固态锂/硫电池(ASSLSB)的实际应用。在此,设计了前所未有的Li 2 S-Li x In 2 S 3阴极,其中In 2 S 3在高能球磨下与Li 2 S反应。引入原位电子衍射和异位XPS来探讨ASSLSB中Li 2 S-Li x In 2 S 3的反应机理。结果表明,Li x In 2 S 3充当电荷载流子(Li +和 e -)的迁移介体和 Li 2 S 活化的氧化还原介体,确保阴极界面处有效的电子和离子传输并抑制 ≈ 70阴极的相对体积变化百分比,由原位 TEM 证实。因此,Li 2 S-Li x In 2 S 3阴极在4.0 mg Li2S cm -2 下提供3.47 mAh cm -2初始面积容量,且Li 2 S利用率为78%。具有Li 2 S的固态电池-Li x In 2 S 3正极在0.192 mA cm -2下经过200个循环后仍具有82.35%的容量保持率,并且在室温下具有高达0.64 mA cm -2的卓越倍率能力。此外,Li 2 S-Li x In 2 S 3在室温下0.192 mA cm -2 表现出最高的初始面积容量4.08 mAh cm -2,50个循环后容量保持率约为74.01%,而6.6 mg Li2S cm -2则为0.192 mA cm -2。所提出的氧化还原介体策略最大限度地减少了 ASSLSB 的体积变化,并实现了出色的电化学性能。
更新日期:2023-11-12
down
wechat
bug