当前位置:
X-MOL 学术
›
Sens. Actuators B Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Catalytic hairpin assembly-mediated SERS biosensor for double detection of MiRNAs using gold nanoclusters-doped COF substrate
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2023-11-10 , DOI: 10.1016/j.snb.2023.134953 Xiaojun Luo , Rui Tan , Zhichao Xia , Weiling Yue , Jiayi Peng , Xue Yuan , Mengjun Wang , Panjie Li , Yi He
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2023-11-10 , DOI: 10.1016/j.snb.2023.134953 Xiaojun Luo , Rui Tan , Zhichao Xia , Weiling Yue , Jiayi Peng , Xue Yuan , Mengjun Wang , Panjie Li , Yi He
A novel surface-enhanced Raman scattering (SERS) and catalytic hairpin assembly (CHA) technique dependent dual-signal amplification method for double detection of microRNAs (miRNAs) was created in this work. When target miRNAs were present, CHA reactions could be triggered between the corresponding hairpin DNAs, fixing the SERS tags (two distinct Raman reporters, 4-mercaptobenzonitrile and 4-mercaptopyridine, which were pre-labeled in the space between Au core and silver shell nanoparticles) onto the gold nanoclusters-doped covalent organic frameworks (AuNCs/COF) nanofiber substrate surface, which generated numerous “hot spots” and ultimately produced amplified SERS signals. Besides, with the help of the CHA cycles, much more target miRNAs were captured to improve the detection sensitivity and decrease the detection limit of multiplex detection down to 77 aM for miRNA-21 and 93 aM for miRNA-155, respectively. This SERS biosensor also exhibited a broad detection range (10 −10 M), good specificity, high reproducibility, as well as excellent recoveries in spiked human serum samples (in the range of 94.5–99.4%). The findings of our experiment suggested that the multiple signal amplification biosensors that were developed have significant potential for multiplex detection of cancer biomarkers (miRNAs and their analogs) in the fields of bioanalysis and clinical biomedicine.
中文翻译:
催化发夹组装介导的 SERS 生物传感器,使用金纳米簇掺杂的 COF 基底双重检测 miRNA
这项工作创建了一种新型表面增强拉曼散射 (SERS) 和催化发夹组装 (CHA) 技术依赖的双信号放大方法,用于双重检测 microRNA (miRNA)。当目标 miRNA 存在时,可以在相应的发夹 DNA 之间触发 CHA 反应,固定 SERS 标签(两个不同的拉曼报告基因,4-巯基苯甲腈和 4-巯基吡啶,它们预先标记在金核和银壳纳米颗粒之间的空间中) )到金纳米团簇掺杂的共价有机框架(AuNCs/COF)纳米纤维基材表面上,产生大量“热点”并最终产生放大的SERS信号。此外,在 CHA 循环的帮助下,捕获了更多的目标 miRNA,从而提高了检测灵敏度,并将多重检测的检测限分别降至 miRNA-21 的 77 aM 和 miRNA-155 的 93 aM。该SERS生物传感器还表现出较宽的检测范围(10 −10 M)、良好的特异性、高重现性以及在加标人血清样品中出色的回收率(在94.5-99.4%范围内)。我们的实验结果表明,所开发的多重信号放大生物传感器在生物分析和临床生物医学领域具有对癌症生物标志物(miRNA 及其类似物)进行多重检测的巨大潜力。
更新日期:2023-11-10
中文翻译:
催化发夹组装介导的 SERS 生物传感器,使用金纳米簇掺杂的 COF 基底双重检测 miRNA
这项工作创建了一种新型表面增强拉曼散射 (SERS) 和催化发夹组装 (CHA) 技术依赖的双信号放大方法,用于双重检测 microRNA (miRNA)。当目标 miRNA 存在时,可以在相应的发夹 DNA 之间触发 CHA 反应,固定 SERS 标签(两个不同的拉曼报告基因,4-巯基苯甲腈和 4-巯基吡啶,它们预先标记在金核和银壳纳米颗粒之间的空间中) )到金纳米团簇掺杂的共价有机框架(AuNCs/COF)纳米纤维基材表面上,产生大量“热点”并最终产生放大的SERS信号。此外,在 CHA 循环的帮助下,捕获了更多的目标 miRNA,从而提高了检测灵敏度,并将多重检测的检测限分别降至 miRNA-21 的 77 aM 和 miRNA-155 的 93 aM。该SERS生物传感器还表现出较宽的检测范围(10 −10 M)、良好的特异性、高重现性以及在加标人血清样品中出色的回收率(在94.5-99.4%范围内)。我们的实验结果表明,所开发的多重信号放大生物传感器在生物分析和临床生物医学领域具有对癌症生物标志物(miRNA 及其类似物)进行多重检测的巨大潜力。