当前位置: X-MOL 学术Comm. Pure Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A dynamical approach to the study of instability near Couette flow
Communications on Pure and Applied Mathematics ( IF 3.1 ) Pub Date : 2023-11-08 , DOI: 10.1002/cpa.22183
Hui Li 1 , Nader Masmoudi 2, 3 , Weiren Zhao 1
Affiliation  

In this paper, we obtain the optimal instability threshold of the Couette flow for Navier–Stokes equations with small viscosity ν > 0 $\nu >0$ , when the perturbations are in the critical spaces H x 1 L y 2 $H^1_xL_y^2$ . More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size ν 1 2 δ 0 $\nu ^{\frac{1}{2}-\delta _0}$ with any small δ 0 > 0 $\delta _0>0$ , which implies that ν 1 2 $\nu ^{\frac{1}{2}}$ is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.

中文翻译:

研究库埃特流附近不稳定性的动力学方法

在本文中,我们获得了小粘度Navier-Stokes方程的Couette流的最佳不稳定阈值 ν > 0 $\nu >0$ ,当扰动位于临界空间时 H X 1 L y 2 $H^1_xL_y^2$ 。更准确地说,我们引入了一种新的动力学方法来证明某些尺寸扰动的不稳定性 ν 1 2 - δ 0 $\nu ^{\frac{1}{2}-\delta _0}$ 与任何小 δ 0 > 0 $\delta _0>0$ ,这意味着 ν 1 2 $\nu ^{\frac{1}{2}}$ 是锐稳定性阈值。在我们的方法中,我们在不参考特征值或伪谱的情况下证明了瞬态指数增长。作为一种应用,对于靠近库埃特流的剪切流周围的线性化欧拉方程,我们提供了一种新工具来证明相应瑞利算子的增长模式的存在,并给出特征值的精确位置。
更新日期:2023-11-08
down
wechat
bug