当前位置:
X-MOL 学术
›
Inorg. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In situ built nanoconfined Nb2O5 particles in a 3D interconnected Nb2C MXene@rGO conductive framework for high-performance potassium-ion batteries
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2023-11-10 , DOI: 10.1039/d3qi01775c
Cong Liu 1, 2 , Zhitang Fang 1 , Weizhi Kou 1 , Xiaoge Li 3 , Jinhua Zhou 4 , Gang Yang 4 , Luming Peng 1 , Xuefeng Guo 1 , Weiping Ding 1 , Wenhua Hou 1
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2023-11-10 , DOI: 10.1039/d3qi01775c
Cong Liu 1, 2 , Zhitang Fang 1 , Weizhi Kou 1 , Xiaoge Li 3 , Jinhua Zhou 4 , Gang Yang 4 , Luming Peng 1 , Xuefeng Guo 1 , Weiping Ding 1 , Wenhua Hou 1
Affiliation
![]() |
Exploring novel anode materials with excellent electrochemical performance is of great significance for the development of potassium-ion batteries (KIBs). Here, a 3D interconnected Nb2C/rGO conductive framework with in situ generated Nb2O5 nanoparticles (Nb2O5/Nb2C/rGO) is successfully constructed by a simple one-step hydrothermal method and subsequent freeze-drying and annealing treatments. The unique structure formed by the intimate contact of the three components has a 3D conductive network, abundant pores and a large specific surface area, which can not only inhibit the self-restacking of Nb2C nanosheets and the agglomeration of Nb2O5 nanoparticles and alleviate the volume change during the charge–discharge process, but also expose more active sites and provide unimpeded channels for the diffusion of K+ and infiltration of the electrolyte. Meanwhile, Nb2O5 nanoparticles produced by in situ oxidation of surface Nb2C and the residual subsurface Nb2C with a low potassium ion diffusion barrier and a high conductivity can shorten the diffusion distance and promote the diffusion kinetics of electrons/ions. Benefiting from the elaborately designed structure and synergistic effects of three different components, as an anode for KIBs, the resulting Nb2O5/Nb2C/rGO exhibits a superior specific capacity of 410.6 mA h g−1 after 100 cycles at 0.1 A g−1, an exceptional rate performance of 159.0 mA h g−1 at 5 A g−1, a capacity retention of 88.8% and a coulombic efficiency over 99.8% after 1000 cycles at 2.0 A g−1. Moreover, Nb2O5/Nb2C/rGO also shows a good potassium storage performance in a KIB full-cell. Furthermore, the combined potassium storage mechanism of K+ intercalation/deintercalation is revealed by CV and in/ex situ analyses. This work can provide more meaningful guidance for the rational design and construction of anode materials for high-performance KIBs.
中文翻译:
在 3D 互连 Nb2C MXene@rGO 导电框架中原位构建纳米限制 Nb2O5 颗粒,用于高性能钾离子电池
探索具有优异电化学性能的新型负极材料对于钾离子电池(KIB)的发展具有重要意义。在这里,通过简单的一步水热法和随后的冷冻干燥法成功构建了具有原位生成的 Nb 2 O 5纳米颗粒(Nb 2 O 5 /Nb 2 C/rGO)的 3D 互连 Nb 2 C/rGO 导电框架。退火处理。三种组分紧密接触形成的独特结构具有3D导电网络、丰富的孔隙和较大的比表面积,不仅可以抑制Nb 2 C纳米片的自重堆积和Nb 2 O 5纳米颗粒的团聚缓解充放电过程中的体积变化,同时也暴露出更多的活性位点,为K +的扩散和电解液的渗透提供畅通的通道。同时,表面Nb 2 C和残留的次表面Nb 2 C原位氧化生成的Nb 2 O 5纳米粒子具有低钾离子扩散势垒和高电导率,可以缩短扩散距离并促进电子/离子的扩散动力学。受益于精心设计的结构和三种不同组分的协同效应,作为KIBs的阳极,所得的Nb 2 O 5 /Nb 2 C/rGO在0.1 A g下循环100次后表现出410.6 mA hg -1的优异比容量-1 ,在 5 A g -1下具有 159.0 mA hg -1的出色倍率性能,在 2.0 A g -1下循环 1000 次后容量保持率为 88.8%,库仑效率超过 99.8% 。此外,Nb 2 O 5 /Nb 2 C/rGO在KIB全电池中也表现出良好的储钾性能。此外,通过CV和原位/异位分析揭示了K +嵌入/脱嵌的组合钾储存机制。这项工作可以为高性能KIB负极材料的合理设计和构建提供更有意义的指导。
更新日期:2023-11-10
中文翻译:

在 3D 互连 Nb2C MXene@rGO 导电框架中原位构建纳米限制 Nb2O5 颗粒,用于高性能钾离子电池
探索具有优异电化学性能的新型负极材料对于钾离子电池(KIB)的发展具有重要意义。在这里,通过简单的一步水热法和随后的冷冻干燥法成功构建了具有原位生成的 Nb 2 O 5纳米颗粒(Nb 2 O 5 /Nb 2 C/rGO)的 3D 互连 Nb 2 C/rGO 导电框架。退火处理。三种组分紧密接触形成的独特结构具有3D导电网络、丰富的孔隙和较大的比表面积,不仅可以抑制Nb 2 C纳米片的自重堆积和Nb 2 O 5纳米颗粒的团聚缓解充放电过程中的体积变化,同时也暴露出更多的活性位点,为K +的扩散和电解液的渗透提供畅通的通道。同时,表面Nb 2 C和残留的次表面Nb 2 C原位氧化生成的Nb 2 O 5纳米粒子具有低钾离子扩散势垒和高电导率,可以缩短扩散距离并促进电子/离子的扩散动力学。受益于精心设计的结构和三种不同组分的协同效应,作为KIBs的阳极,所得的Nb 2 O 5 /Nb 2 C/rGO在0.1 A g下循环100次后表现出410.6 mA hg -1的优异比容量-1 ,在 5 A g -1下具有 159.0 mA hg -1的出色倍率性能,在 2.0 A g -1下循环 1000 次后容量保持率为 88.8%,库仑效率超过 99.8% 。此外,Nb 2 O 5 /Nb 2 C/rGO在KIB全电池中也表现出良好的储钾性能。此外,通过CV和原位/异位分析揭示了K +嵌入/脱嵌的组合钾储存机制。这项工作可以为高性能KIB负极材料的合理设计和构建提供更有意义的指导。