当前位置:
X-MOL 学术
›
IEEE Signal Proc. Mag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Data Science Education: The Signal Processing Perspective [SP Education]
IEEE Signal Processing Magazine ( IF 9.4 ) Pub Date : 2023-11-08 , DOI: 10.1109/msp.2023.3294709 Sharon Gannot 1 , Zheng-Hua Tan 2 , Martin Haardt 3 , Nancy F. Chen 4 , Hoi-To Wai 5 , Ivan Tashev 6 , Walter Kellermann 7 , Justin Dauwels 8
IEEE Signal Processing Magazine ( IF 9.4 ) Pub Date : 2023-11-08 , DOI: 10.1109/msp.2023.3294709 Sharon Gannot 1 , Zheng-Hua Tan 2 , Martin Haardt 3 , Nancy F. Chen 4 , Hoi-To Wai 5 , Ivan Tashev 6 , Walter Kellermann 7 , Justin Dauwels 8
Affiliation
In the last decade, the signal processing (SP) community has witnessed a paradigm shift from model-based to data-driven methods. Machine learning (ML)—more specifically, deep learning—methodologies are nowadays widely used in all SP fields, e.g., audio, speech, image, video, multimedia, and multimodal/multisensor processing, to name a few. Many data-driven methods also incorporate domain knowledge to improve problem modeling, especially when computational burden, training data scarceness, and memory size are important constraints.
中文翻译:
数据科学教育:信号处理视角 [SP 教育]
在过去的十年中,信号处理 (SP) 社区见证了从基于模型的方法到数据驱动的方法的范式转变。机器学习(ML)——更具体地说,深度学习——方法如今广泛应用于所有 SP 领域,例如音频、语音、图像、视频、多媒体和多模式/多传感器处理等。许多数据驱动的方法还结合了领域知识来改进问题建模,特别是当计算负担、训练数据稀缺性和内存大小是重要限制时。
更新日期:2023-11-08
中文翻译:
数据科学教育:信号处理视角 [SP 教育]
在过去的十年中,信号处理 (SP) 社区见证了从基于模型的方法到数据驱动的方法的范式转变。机器学习(ML)——更具体地说,深度学习——方法如今广泛应用于所有 SP 领域,例如音频、语音、图像、视频、多媒体和多模式/多传感器处理等。许多数据驱动的方法还结合了领域知识来改进问题建模,特别是当计算负担、训练数据稀缺性和内存大小是重要限制时。