Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design and Characterization of Deformable Superstructures Based on Amine-Acrylate Liquid Crystal Elastomers
Advanced Science ( IF 14.3 ) Pub Date : 2023-11-09 , DOI: 10.1002/advs.202303594 Fang Zhao 1, 2 , Yuzhan Li 2 , Hong Gao 1 , Ran Tao 3 , Yiqi Mao 4 , Yu Chen 3 , Sheng Zhou 3 , Jianming Zhao 2 , Dong Wang 2
Advanced Science ( IF 14.3 ) Pub Date : 2023-11-09 , DOI: 10.1002/advs.202303594 Fang Zhao 1, 2 , Yuzhan Li 2 , Hong Gao 1 , Ran Tao 3 , Yiqi Mao 4 , Yu Chen 3 , Sheng Zhou 3 , Jianming Zhao 2 , Dong Wang 2
Affiliation
Deformable superstructures are man-made materials with large deformation properties that surpass those of natural materials. However, traditional deformable superstructures generally use conventional materials as substrates, limiting their applications in multi-mode reconfigurable robots and space-expandable morphing structures. In this work, amine-acrylate-based liquid crystal elastomers (LCEs) are used as deformable superstructures substrate to provide high driving stress and strain. By changing the molar ratio of amine to acrylate, the thermal and mechanical properties of the LCEs are modified. The LCE with a ratio of 0.9 exhibited improved polymerization degree, elongation at break, and toughness. Besides an anisotropic finite deformation model based on hyperelastic theory is developed for the LCEs to capture the configuration variation under temperature activation. Built upon these findings, an LCE-based paper-cutting structure with negative Poisson's ratio and a 2D lattice superstructure model are combined, processed, and molded by laser cutting. The developed superstructure is pre-programmed to the configuration required for service conditions, and the deformation processes are analyzed using both experimental and finite element methods. This study is expected to advance the application of deformable superstructures and LCEs in the fields of defense and military, aerospace, and bionic robotics.
中文翻译:
基于胺丙烯酸酯液晶弹性体的可变形超结构的设计与表征
可变形上部结构是具有超越天然材料的大变形性能的人造材料。然而,传统的可变形上部结构通常使用常规材料作为基底,限制了其在多模式可重构机器人和空间可扩展变形结构中的应用。在这项工作中,胺丙烯酸酯基液晶弹性体(LCE)被用作可变形上部结构基底,以提供高驱动应力和应变。通过改变胺与丙烯酸酯的摩尔比,可以改变 LCE 的热性能和机械性能。比率为0.9的LCE表现出改善的聚合度、断裂伸长率和韧性。此外,还为 LCE 开发了基于超弹性理论的各向异性有限变形模型,以捕获温度激活下的构型变化。基于这些发现,基于 LCE 的负泊松比剪纸结构和二维晶格上部结构模型通过激光切割进行组合、加工和成型。所开发的上部结构预先编程为使用条件所需的配置,并使用实验和有限元方法分析变形过程。这项研究有望推动可变形上部结构和LCE在国防军事、航空航天和仿生机器人领域的应用。
更新日期:2023-11-09
中文翻译:
基于胺丙烯酸酯液晶弹性体的可变形超结构的设计与表征
可变形上部结构是具有超越天然材料的大变形性能的人造材料。然而,传统的可变形上部结构通常使用常规材料作为基底,限制了其在多模式可重构机器人和空间可扩展变形结构中的应用。在这项工作中,胺丙烯酸酯基液晶弹性体(LCE)被用作可变形上部结构基底,以提供高驱动应力和应变。通过改变胺与丙烯酸酯的摩尔比,可以改变 LCE 的热性能和机械性能。比率为0.9的LCE表现出改善的聚合度、断裂伸长率和韧性。此外,还为 LCE 开发了基于超弹性理论的各向异性有限变形模型,以捕获温度激活下的构型变化。基于这些发现,基于 LCE 的负泊松比剪纸结构和二维晶格上部结构模型通过激光切割进行组合、加工和成型。所开发的上部结构预先编程为使用条件所需的配置,并使用实验和有限元方法分析变形过程。这项研究有望推动可变形上部结构和LCE在国防军事、航空航天和仿生机器人领域的应用。