当前位置:
X-MOL 学术
›
Rev. Mod. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atmospheric nanoparticle growth
Reviews of Modern Physics ( IF 45.9 ) Pub Date : 2023-11-09 , DOI: 10.1103/revmodphys.95.045002 Dominik Stolzenburg , Runlong Cai , Sara M. Blichner , Jenni Kontkanen , Putian Zhou , Risto Makkonen , Veli-Matti Kerminen , Markku Kulmala , Ilona Riipinen , Juha Kangasluoma
Reviews of Modern Physics ( IF 45.9 ) Pub Date : 2023-11-09 , DOI: 10.1103/revmodphys.95.045002 Dominik Stolzenburg , Runlong Cai , Sara M. Blichner , Jenni Kontkanen , Putian Zhou , Risto Makkonen , Veli-Matti Kerminen , Markku Kulmala , Ilona Riipinen , Juha Kangasluoma
New particle formation of liquid or solid nanoparticles from gas-phase precursors is a decisive process in Earth’s atmosphere and is considered one of the largest uncertainties in climate change predictions. Key for the climate relevance of new particle formation is the growth of freshly formed molecular clusters, as it determines the survival of these particles to cloud condensation nuclei sizes, where they can contribute to the aerosol-indirect effect. This review lays out the fundamental definitions of nanoparticle growth and addresses the rapidly emerging field of new particle formation studies with a focus on the diverse processes contributing to nanoparticle growth, explicitly comparing the latest experimental findings and their implementation in large-scale models. Atmospheric nanoparticle growth is a complex phenomenon including condensational and reactive vapor uptake, aerosol coagulation, and sink processes. It is linked to thermodynamics, cluster- and phase-transition physics. Nanoparticle growth rates measured from the evolution of the particle-size distribution describe growth as a collective phenomenon, while models often interpret them on a single-particle level and incorporate it into highly simplified size-distribution representations. Recent atmospheric observations show that sulfuric acid together with ammonia and amines, iodic acid, and oxidized organic species can contribute to nanoparticle growth, whereas most models describe the growth effects from a limited subset of this variety of condensable vapors. Atmospheric simulation chamber experiments have clarified the role of ions, intermolecular forces, the interplay of acids and bases, and the contribution of different types of organic vapors. Especially in the complex thermodynamics of organic vapor condensation, the field has had noteworthy advances over the last decade. While the experimental field has achieved significant progress in methodology and process level understanding, this has not led to a similar improvement in the description of the climate impact of nanoparticle formation in large-scale models. This review sets the basis to better align experimental and modeling studies on nanoparticle growth, giving specific guidance for future studies aiming to resolve the questions as to why the climate response in large-scale models seems to be buffered against high survival probabilities and why the global growth observations herein show surprisingly low variation.
中文翻译:
大气纳米颗粒生长
由气相前体形成液体或固体纳米颗粒的新颗粒是地球大气中的决定性过程,被认为是气候变化预测中最大的不确定性之一。新颗粒形成与气候相关性的关键是新形成的分子簇的生长,因为它决定了这些颗粒在云凝结核尺寸中的生存,从而有助于气溶胶间接效应。这篇综述列出了纳米颗粒生长的基本定义,并讨论了快速新兴的新颗粒形成研究领域,重点关注有助于纳米颗粒生长的多种过程,明确比较了最新的实验结果及其在大规模模型中的实施。大气纳米粒子的生长是一种复杂的现象,包括冷凝和反应性蒸气吸收、气溶胶凝结和下沉过程。它与热力学、团簇和相变物理学相关。根据粒度分布的演变测量的纳米颗粒生长速率将生长描述为一种集体现象,而模型通常在单颗粒水平上解释它们,并将其纳入高度简化的尺寸分布表示中。最近的大气观测表明,硫酸与氨和胺、碘酸和氧化有机物质一起可以促进纳米颗粒的生长,而大多数模型描述了此类可凝结蒸气的有限子集的生长效应。大气模拟室实验阐明了离子的作用、分子间力、酸和碱的相互作用以及不同类型有机蒸气的贡献。特别是在有机蒸气冷凝的复杂热力学方面,该领域在过去十年中取得了显着的进展。虽然实验领域在方法论和过程层面的理解方面取得了重大进展,但这并没有在大规模模型中描述纳米颗粒形成的气候影响方面取得类似的进步。这篇综述为更好地协调纳米颗粒生长的实验和建模研究奠定了基础,为未来的研究提供了具体指导,旨在解决以下问题:为什么大规模模型中的气候响应似乎会受到高生存概率的缓冲,以及为什么全球本文的生长观察显示令人惊讶的低变化。
更新日期:2023-11-09
中文翻译:
大气纳米颗粒生长
由气相前体形成液体或固体纳米颗粒的新颗粒是地球大气中的决定性过程,被认为是气候变化预测中最大的不确定性之一。新颗粒形成与气候相关性的关键是新形成的分子簇的生长,因为它决定了这些颗粒在云凝结核尺寸中的生存,从而有助于气溶胶间接效应。这篇综述列出了纳米颗粒生长的基本定义,并讨论了快速新兴的新颗粒形成研究领域,重点关注有助于纳米颗粒生长的多种过程,明确比较了最新的实验结果及其在大规模模型中的实施。大气纳米粒子的生长是一种复杂的现象,包括冷凝和反应性蒸气吸收、气溶胶凝结和下沉过程。它与热力学、团簇和相变物理学相关。根据粒度分布的演变测量的纳米颗粒生长速率将生长描述为一种集体现象,而模型通常在单颗粒水平上解释它们,并将其纳入高度简化的尺寸分布表示中。最近的大气观测表明,硫酸与氨和胺、碘酸和氧化有机物质一起可以促进纳米颗粒的生长,而大多数模型描述了此类可凝结蒸气的有限子集的生长效应。大气模拟室实验阐明了离子的作用、分子间力、酸和碱的相互作用以及不同类型有机蒸气的贡献。特别是在有机蒸气冷凝的复杂热力学方面,该领域在过去十年中取得了显着的进展。虽然实验领域在方法论和过程层面的理解方面取得了重大进展,但这并没有在大规模模型中描述纳米颗粒形成的气候影响方面取得类似的进步。这篇综述为更好地协调纳米颗粒生长的实验和建模研究奠定了基础,为未来的研究提供了具体指导,旨在解决以下问题:为什么大规模模型中的气候响应似乎会受到高生存概率的缓冲,以及为什么全球本文的生长观察显示令人惊讶的低变化。