Nature ( IF 50.5 ) Pub Date : 2023-11-08 , DOI: 10.1038/s41586-023-06717-x Tom Le Voyer 1, 2 , Audrey V Parent 3 , Xian Liu 3 , Axel Cederholm 4 , Adrian Gervais 1, 2 , Jérémie Rosain 1, 2, 5 , Tina Nguyen 6, 7 , Malena Perez Lorenzo 1, 2 , Elze Rackaityte 8 , Darawan Rinchai 9 , Peng Zhang 9 , Lucy Bizien 1, 2 , Gonca Hancioglu 10 , Pascale Ghillani-Dalbin 11 , Jean-Luc Charuel 11 , Quentin Philippot 1, 2 , Mame Sokhna Gueye 1, 2 , Majistor Raj Luxman Maglorius Renkilaraj 1, 2 , Masato Ogishi 9 , Camille Soudée 1, 2 , Mélanie Migaud 1, 2 , Flore Rozenberg 12 , Mana Momenilandi 1, 2 , Quentin Riller 13 , Luisa Imberti 14 , Ottavia M Delmonte 15 , Gabriele Müller 16, 17 , Baerbel Keller 17, 18 , Julio Orrego 19 , William Alexander Franco Gallego 19 , Tamar Rubin 20 , Melike Emiroglu 21 , Nima Parvaneh 22 , Daniel Eriksson 23, 24, 25 , Maribel Aranda-Guillen 25 , David I Berrios 3 , Linda Vong 26, 27 , Constance H Katelaris 28 , Peter Mustillo 29 , Johannes Raedler 30 , Jonathan Bohlen 1, 2 , Jale Bengi Celik 31 , Camila Astudillo 32, 33 , Sarah Winter 34 , , , Catriona McLean 35 , Aurélien Guffroy 36 , Joseph L DeRisi 8, 37 , David Yu 3 , Corey Miller 3 , Yi Feng 9 , Audrey Guichard 38 , Vivien Béziat 1, 2, 9 , Jacinta Bustamante 1, 2, 5, 9 , Qiang Pan-Hammarström 39, 40 , Yu Zhang 15, 41 , Lindsey B Rosen 15 , Steve M Holland 15 , Marita Bosticardo 15 , Heather Kenney 15 , Riccardo Castagnoli 42, 43 , Charlotte A Slade 44, 45, 46 , Kaan Boztuğ 47, 48, 49, 50 , Nizar Mahlaoui 51, 52 , Sylvain Latour 34 , Roshini S Abraham 53 , Vassilios Lougaris 54 , Fabian Hauck 30 , Anna Sediva 55 , Faranaz Atschekzei 56 , Georgios Sogkas 56 , M Cecilia Poli 32, 33 , Mary A Slatter 57 , Boaz Palterer 58 , Michael D Keller 59 , Alberto Pinzon-Charry 60, 61 , Anna Sullivan 60, 61 , Luke Droney 60, 61 , Daniel Suan 60, 62 , Melanie Wong 60, 62, 63 , Alisa Kane 7, 60, 64, 65 , Hannah Hu 60, 64, 65 , Cindy Ma 6, 7, 60 , Hana Grombiříková 66 , Peter Ciznar 67 , Ilan Dalal 68 , Nathalie Aladjidi 69 , Miguel Hie 70 , Estibaliz Lazaro 71 , Jose Franco 19 , Sevgi Keles 72 , Marion Malphettes 73 , Marlene Pasquet 74 , Maria Elena Maccari 16, 75 , Andrea Meinhardt 76 , Aydan Ikinciogullari 77 , Mohammad Shahrooei 78, 79 , Fatih Celmeli 80 , Patrick Frosk 81 , Christopher C Goodnow 6, 7, 60 , Paul E Gray 60, 82 , Alexandre Belot 83, 84, 85 , Hye Sun Kuehn 86 , Sergio D Rosenzweig 86 , Makoto Miyara 11, 87 , Francesco Licciardi 88 , Amélie Servettaz 89, 90 , Vincent Barlogis 91 , Guillaume Le Guenno 92 , Vera-Maria Herrmann 93 , Taco Kuijpers 94 , Grégoire Ducoux 95 , Françoise Sarrot-Reynauld 96 , Catharina Schuetz 97 , Charlotte Cunningham-Rundles 98 , Frédéric Rieux-Laucat 13 , Stuart G Tangye 6, 7, 60 , Cristina Sobacchi 99, 100 , Rainer Doffinger 101 , Klaus Warnatz 17, 18 , Bodo Grimbacher 16, 17 , Claire Fieschi 73, 102 , Laureline Berteloot 103 , Vanessa L Bryant 44, 45, 46 , Sophie Trouillet Assant 38, 104 , Helen Su 15, 41 , Benedicte Neven 52 , Laurent Abel 1, 2, 9 , Qian Zhang 1, 2, 9 , Bertrand Boisson 1, 2, 9 , Aurélie Cobat 1, 2, 9 , Emmanuelle Jouanguy 1, 2, 9 , Olle Kampe 105 , Paul Bastard 1, 2, 9, 52 , Chaim M Roifman 26, 27 , Nils Landegren 4, 25 , Luigi D Notarangelo 15 , Mark S Anderson 3, 106 , Jean-Laurent Casanova 1, 2, 9, 107, 108 , Anne Puel 1, 2, 9
Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.
中文翻译:
具有替代 NF-κB 通路缺陷的人类体内针对 I 型干扰素的自身抗体
由常染色体隐性遗传 AIRE 缺陷引起的 1 型自身免疫性多内分泌病综合征 (APS-1) 患者会产生中和 I 型干扰素 (IFN) 的自身抗体1,2 ,从而容易患上危及生命的 COVID-19 肺炎3 。在此我们报告,患有常染色体隐性遗传 NIK 或 RELB 缺陷或特定类型的常染色体显性 NF-κB2 缺陷的患者也具有针对 I 型 IFN 的中和自身抗体,并且患危及生命的 COVID-19 肺炎的风险较高。在患有常染色体显性 NF-κB2 缺陷的患者中,这些自身抗体仅存在于与转录(p52 活性)由于 p100 生成 p52 的加工受损而导致的功能丧失 (LOF) 和调节性(IκBδ)相关变异杂合的个体中。活性)由于未加工的 p100 的积累而导致功能获得(GOF),因此增加了 IκBδ 的抑制活性(以下称为 p52 LOF /IκBδ GOF )。相比之下,在导致 p100 和p52单倍体不足(以下称为 p52 LOF /IκBδ LOF )或 p52 功能获得(以下称为 p52 GOF /IκBδ洛夫)。与 APS-1 患者相比,患有 NIK、RELB 或 NF-κB2 疾病的患者几乎没有组织特异性自身抗体。然而,它们的胸腺结构异常,表达 AIRE 的髓质胸腺上皮细胞很少。 人类先天性 NF-κB 通路缺陷会损害表达 AIRE 的髓质胸腺上皮细胞的发育,从而导致 I 型 IFN 自身抗体的产生和病毒性疾病的易感性。