当前位置:
X-MOL 学术
›
Commun. Number Theory Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Whittaker Fourier type solutions to differential equations arising from string theory
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2023-11-07 , DOI: 10.4310/cntp.2023.v17.n3.a2 Ksenia Fedosova 1 , Kim Klinger-Logan 2
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2023-11-07 , DOI: 10.4310/cntp.2023.v17.n3.a2 Ksenia Fedosova 1 , Kim Klinger-Logan 2
Affiliation
In this article, we find the full Fourier expansion for solutions of $(\Delta-\lambda)f(z) = -E_k (z) E_\ell (z)$ for $z = x + i y \in \mathfrak{H}$ for certain values of parameters $k$, $\ell$ and $\lambda$. When such an $f$ is fully automorphic these functions are referred to as generalized non-holomorphic Eisenstein series. We give a connection of the boundary condition on such Fourier series with convolution formulas on the divisor functions. Additionally, we discuss a possible relation with the differential Galois theory.
中文翻译:
弦理论产生的微分方程的 Whittaker 傅立叶型解
在本文中,我们找到了 $(\Delta-\lambda)f(z) = -E_k (z) E_\ell (z)$ 的解的完整傅立叶展开,其中 $z = x + iy \in \mathfrak{ H}$ 对于参数 $k$、$\ell$ 和 $\lambda$ 的某些值。当这样的 $f$ 完全自守时,这些函数被称为广义非全纯爱森斯坦级数。我们给出了这种傅里叶级数的边界条件与除数函数的卷积公式的联系。此外,我们讨论了与微分伽罗瓦理论的可能关系。
更新日期:2023-11-08
中文翻译:
弦理论产生的微分方程的 Whittaker 傅立叶型解
在本文中,我们找到了 $(\Delta-\lambda)f(z) = -E_k (z) E_\ell (z)$ 的解的完整傅立叶展开,其中 $z = x + iy \in \mathfrak{ H}$ 对于参数 $k$、$\ell$ 和 $\lambda$ 的某些值。当这样的 $f$ 完全自守时,这些函数被称为广义非全纯爱森斯坦级数。我们给出了这种傅里叶级数的边界条件与除数函数的卷积公式的联系。此外,我们讨论了与微分伽罗瓦理论的可能关系。