当前位置: X-MOL 学术Nat. Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
sciCSR infers B cell state transition and predicts class-switch recombination dynamics using single-cell transcriptomic data
Nature Methods ( IF 36.1 ) Pub Date : 2023-11-06 , DOI: 10.1038/s41592-023-02060-1
Joseph C F Ng 1 , Guillem Montamat Garcia 2 , Alexander T Stewart 3 , Paul Blair 2 , Claudia Mauri 2 , Deborah K Dunn-Walters 3 , Franca Fraternali 1
Affiliation  

Class-switch recombination (CSR) is an integral part of B cell maturation. Here we present sciCSR (pronounced ‘scissor’, single-cell inference of class-switch recombination), a computational pipeline that analyzes CSR events and dynamics of B cells from single-cell RNA sequencing (scRNA-seq) experiments. Validated on both simulated and real data, sciCSR re-analyzes scRNA-seq alignments to differentiate productive heavy-chain immunoglobulin transcripts from germline ‘sterile’ transcripts. From a snapshot of B cell scRNA-seq data, a Markov state model is built to infer the dynamics and direction of CSR. Applying sciCSR on severe acute respiratory syndrome coronavirus 2 vaccination time-course scRNA-seq data, we observe that sciCSR predicts, using data from an earlier time point in the collected time-course, the isotype distribution of B cell receptor repertoires of subsequent time points with high accuracy (cosine similarity ~0.9). Using processes specific to B cells, sciCSR identifies transitions that are often missed by conventional RNA velocity analyses and can reveal insights into the dynamics of B cell CSR during immune response.



中文翻译:


sciCSR 使用单细胞转录组数据推断 B 细胞状态转换并预测类别转换重组动态



类别转换重组 (CSR) 是 B 细胞成熟的一个组成部分。在这里,我们提出了 sciCSR(发音为“scissor”,类别转换重组的单细胞推断),这是一种计算管道,可通过单细胞 RNA 测序 (scRNA-seq) 实验分析 B 细胞的 CSR 事件和动态。 sciCSR 经模拟和真实数据验证,重新分析 scRNA-seq 比对,以区分生产性重链免疫球蛋白转录本和种系“无菌”转录本。根据 B 细胞 scRNA-seq 数据的快照,建立马尔可夫状态模型来推断 CSR 的动态和方向。将 sciCSR 应用于严重急性呼吸综合征冠状病毒 2 疫苗接种时间过程 scRNA-seq 数据,我们观察到 sciCSR 使用收集的时间过程中较早时间点的数据预测后续时间点 B 细胞受体库的同种型分布具有高精度(余弦相似度~0.9)。使用 B 细胞特有的过程,sciCSR 可以识别传统 RNA 速度分析经常遗漏的转变,并可以揭示免疫反应期间 B 细胞 CSR 动态的见解。

更新日期:2023-11-06
down
wechat
bug