当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CoOx-Caged Metal-Organic Frameworks for Sonocatalyzing CO2 to Co for Ultrasound-Assisted Chemodynamic-Gas Cancer Therapy
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-11-05 , DOI: 10.1002/adfm.202311029
Tian Zhang 1 , Qiang Zheng 2 , Jie Huang 3 , Xiang Li 1, 4
Affiliation  

Carbon monoxide (CO) as an endogenous gaseous signaling molecule, is widely studied for its ability to inhibit cancer cell proliferation as gas therapy. However, the therapeutic efficiency of CO gas therapy is far from ideal due to the low availability of CO supply. Here, inspired by the band structure and Fenton-related elements, MIL-101(Cr)@CoOx nanoparticles are introduced for the first time to achieve ultrasound-mediated synergistic therapy by combining CO gas therapy and chemodynamic therapy together effectively. MIL-101(Cr)@CoOx can present substantial CO2 adsorption capacity for the BDC2− linkers and Co center, and enable to transformation of endogenous CO2 to CO efficiently under ultrasound irradiation due to the appropriate band structure and conduction band position. With the Co-engaged Fenton-like reaction, MIL-101(Cr)@CoOx triggered the reactions to catalyze the over-expressed intracellular H2O2 into cytotoxic hydroxyl radicals (·OH). The potential therapeutic outcome of chemodynamic therapy can be amplified by the ultrasonic cavitation-induced conversion between Co3+ and Co2+ in vitro is demonstrated. The proliferation, ATP, and mitochondria functions of 4T1 mouse breast cancer cells are severely compromised by CO-promoted ROS generation and the sono-Fenton effect. Further, in vivo studies confirm that MIL-101(Cr)@CoOx combined with ultrasound irradiation exhibits superior tumor suppression, and achieves the ultrasound-mediated chemodynamic-gas cancer therapy with higher precisions for personalized treatments. This new system offers a distinct concept for constructing smart ultrasound-stimulus systems to realize synergetic cancer therapy.

中文翻译:

CoOx 笼式金属有机框架用于超声催化 CO2 转化为 Co 用于超声辅助化学动力学气癌治疗

一氧化碳(CO)作为一种内源性气体信号分子,因其作为气体疗法抑制癌细胞增殖的能力而被广泛研究。然而,由于二氧化碳供应的可用性较低,二氧化碳气体疗法的治疗效果远非理想。在这里,受能带结构和芬顿相关元素的启发,首次引入MIL-101(Cr)@CoOx纳米粒子,通过有效地将CO气体疗法和化学动力学疗法结合在一起,实现超声介导的协同治疗。 MIL-101(Cr)@CoOx可以对BDC 2−连接子和Co中心呈现出显着的CO 2吸附能力,并且由于适当的能带结构和导带位置,能够在超声照射下将内源CO 2有效地转化为CO。通过共参与芬顿反应,MIL-101(Cr)@CoOx 引发反应,催化细胞内过量表达的 H 2 O 2转化为细胞毒性羟基自由基 (·OH)。化学动力学疗法的潜在治疗效果可以通过体外超声空化诱导的 Co 3+和 Co 2+之间的转化来放大。 4T1 小鼠乳腺癌细胞的增殖、ATP 和线粒体功能受到 CO 促进的 ROS 生成和 sono-Fenton 效应的严重损害。此外,体内研究证实MIL-101(Cr)@CoOx与超声照射相结合表现出优异的肿瘤抑制作用,并实现了超声介导的化学动力学气癌治疗,具有更高精度的个性化治疗。这个新系统为构建智能超声刺激系统以实现协同癌症治疗提供了独特的概念。
更新日期:2023-11-05
down
wechat
bug