Separation and Purification Technology ( IF 8.1 ) Pub Date : 2023-11-04 , DOI: 10.1016/j.seppur.2023.125601 Zhijian Zhang , Min Chen , Zhe Lin , Zhichao Yang , Yafeng Du , Zhihui Chen , Zhenhao Yang , Kongyin Zhao , Ligang Lin
Membrane technology has garnered significant attention for its role in addressing the challenges of molecule/ion separation processes, yet it remains hindered by issues such as membrane fouling, including organic and biofouling. While calcium alginate (CaAlg) membranes have demonstrated remarkable antifouling and molecule/ion separation properties, they suffer from high swell ability and poor mechanical performance. This study introduces a one-step ion-crosslinking method to fabricate a series of copper alginate (CuAlg) hydrogel membranes. These membranes are then assembled into a dual-layer structure with a modified hydrophilic and mechanically robust microfiltration fiber support layer (MHSL). Notably, the CuAlg/MHSL membrane exhibits excellent separation performance, characterized by high selectivity and flux recovery rate. This membrane significantly enhances the long-term molecule/ion separation performance through improved mechanical strength, anti-swelling properties, and antimicrobial capabilities. In addition, the decreased thickness of the CuAlg/MHSL membrane enables higher flux rates, proving beneficial in cases of CaAlg membranes' inability to perform well under high-salt conditions. To further investigate the pore structure and anti-swelling mechanism of the CuAlg membrane, molecular dynamics (MD) simulations are conducted. Additionally, a life cycle analysis comparing the CuAlg hydrogel with various traditional polymers assesses their respective environmental impacts, highlighting the eco-friendliness of the hydrogel as a membrane substrate. These findings provide valuable insights for developing sustainable hydrogel membranes with stable performance and high separation efficiency in molecular/ion separation applications.
中文翻译:
多功能海藻酸铜水凝胶膜用于精确分子/离子分离应用的见解
膜技术因其在解决分子/离子分离过程挑战中的作用而受到广泛关注,但它仍然受到膜污染(包括有机物和生物污染)等问题的阻碍。虽然海藻酸钙(CaAlg)膜表现出卓越的防污和分子/离子分离性能,但其溶胀能力高且机械性能差。本研究介绍了一种一步离子交联方法来制造一系列海藻酸铜 (CuAlg) 水凝胶膜。然后将这些膜组装成双层结构,并带有改良的亲水性且机械坚固的微滤纤维支撑层(MHSL)。值得注意的是,CuAlg/MHSL膜表现出优异的分离性能,具有高选择性和通量恢复率的特点。该膜通过提高机械强度、抗膨胀性能和抗菌能力,显着增强长期分子/离子分离性能。此外,CuAlg/MHSL 膜厚度的减小可实现更高的通量率,这在 CaAlg 膜在高盐条件下无法良好运行的情况下证明是有益的。为了进一步研究 CuAlg 膜的孔结构和抗膨胀机制,进行了分子动力学(MD)模拟。此外,将 CuAlg 水凝胶与各种传统聚合物进行比较的生命周期分析评估了它们各自的环境影响,强调了水凝胶作为膜基材的生态友好性。这些发现为开发在分子/离子分离应用中具有稳定性能和高分离效率的可持续水凝胶膜提供了宝贵的见解。