当前位置: X-MOL 学术Rare Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
2D-MOF/2D-MOF heterojunctions with strong hetero-interface interaction for enhanced photocatalytic hydrogen evolution
Rare Metals ( IF 9.6 ) Pub Date : 2023-11-03 , DOI: 10.1007/s12598-023-02387-w
Yan Ma , Hui-Xue Fang , Rong Chen , Qian Chen , Sheng-Jun Liu , Kui Zhang , Hai-Jin Li

Abstract

Metal organic framework (MOF) shows great potential in the research field of photocatalysis, and it is a big challenge to achieve efficient photocatalytic activity. In this work, we have successfully grown two-dimensional MOF (2D-MOF) nanosheets on 2D-MOF nanosheets for the first time using a homometallic nodal strategy, and successfully prepared ultrathin nanosheets with tightly bound 2D/2D heterojunctions. 2D Ni-BDC nanosheets were used as carriers to grow 2D Ni-TCPP nanosheets on top of them. Ni-TCPP has a high light absorption capacity, thus extending the light absorption range of 2D/2D heterojunctions. The tight coupling of the heterojunction effectively shortens the electron transfer distance, promotes the separation of interfacial charges, and improves the photocatalytic activity. Particularly, Ni-BDC/Ni-TCPP-3 can achieve to a hydrogen production rate of 428.0 μmol·g−1, approximately 5.75 times higher than Ni-BDC and 5.24 times higher than Ni-TCPP, respectively. Thus, 2D-MOF/2D-MOF heterojunctions provide a promising strategy for enhancing photocatalytic performance through rational heterostructure design with homometallic node strategy.

Graphical abstract



中文翻译:

具有强异质界面相互作用的2D-MOF/2D-MOF异质结可增强光催化析氢

摘要

金属有机骨架(MOF)在光催化研究领域显示出巨大的潜力,而实现高效的光催化活性是一个巨大的挑战。在这项工作中,我们首次采用同金属节点策略在2D-MOF纳米片上成功生长了二维MOF(2D-MOF)纳米片,并成功制备了具有紧密结合的2D/2D异质结的超薄纳米片。2D Ni-BDC 纳米片用作载体,在其上生长 2D Ni-TCPP 纳米片。Ni-TCPP具有高光吸收能力,从而扩展了2D/2D异质结的光吸收范围。异质结的紧密耦合有效缩短了电子转移距离,促进了界面电荷的分离,提高了光催化活性。特别地,Ni-BDC/Ni-TCPP-3可以实现428.0μmol·g -1的产氢速率,分别比Ni-BDC高约5.75倍和比Ni-TCPP高约5.24倍。因此,2D-MOF/2D-MOF异质结为通过同金属节点策略的合理异质结构设计来增强光催化性能提供了一种有前景的策略。

图形概要

更新日期:2023-11-04
down
wechat
bug