Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Substitutional Cd Dopant as Photohole Transfer Mediator Boosting Photoelectrochemical Solar Energy Conversion of 2D Cd-ZnIn2S4 Photoanode
Small ( IF 13.0 ) Pub Date : 2023-11-01 , DOI: 10.1002/smll.202304846 Feng Pan 1 , Liyuan Long 1, 2 , Zhenyu Li 1 , Shiming Yan 1 , Lei Wang 3 , Gangyang Lv 1 , Junjun Zhang 1 , Jiahui Chen 1 , Guijie Liang 3 , Dunhui Wang 1
Small ( IF 13.0 ) Pub Date : 2023-11-01 , DOI: 10.1002/smll.202304846 Feng Pan 1 , Liyuan Long 1, 2 , Zhenyu Li 1 , Shiming Yan 1 , Lei Wang 3 , Gangyang Lv 1 , Junjun Zhang 1 , Jiahui Chen 1 , Guijie Liang 3 , Dunhui Wang 1
Affiliation
Fast recombination dynamics of photocarriers competing with sluggish surface photohole oxidation kinetics severely restricts the photoelectrochemical (PEC) conversion efficiency of photoanode. Here, a defect engineering strategy is developed to regulate photohole transfer and interfacial injection dynamics of 2D ZnIn2S4 (ZIS). Via selectively introducing substitutional Cd dopant at Zn sites of the ZIS basal plane, energy band structure and surface electrochemical activity are successfully modulated in the Cd-doped ZIS (Cd-ZIS) nanosheet array photoanode. Comprehensive characterizations manifest that a shallow acceptor level induced by Cd doping and superior electrochemical activity make surface Cd dopants simultaneously act as capture centers and active sites to mediate photohole dynamics at the reaction interface. In depth photocarrier dynamics analysis demonstrates that highly efficient photohole capture of Cd dopants brings about effective space separation of photocarriers and acceleration of surface reaction kinetics. Therefore, the optimum 2D Cd-ZIS achieves excellent PEC solar energy conversion efficiency with a photocurrent density of 5.1 mA cm−2 at 1.23 VRHE and a record of applied bias photon-to-current efficiency (ABPE) of 3.0%. This work sheds light on a microstructure design strategy to effectively regulate photohole dynamics for the next-generation semiconducting PEC photoanodes.
中文翻译:
替代性 Cd 掺杂剂作为光空穴转移介体促进 2D Cd-ZnIn2S4 光阳极的光电化学太阳能转换
光载流子的快速复合动力学与缓慢的表面光空穴氧化动力学竞争严重限制了光电阳极的光电化学(PEC)转换效率。在这里,开发了一种缺陷工程策略来调节 2D ZnIn 2 S 4 (ZIS) 的光空穴传输和界面注入动力学。通过在ZIS基面的Zn位点选择性地引入替代性Cd掺杂剂,成功地调节了Cd掺杂ZIS(Cd-ZIS)纳米片阵列光电阳极的能带结构和表面电化学活性。综合表征表明,Cd 掺杂引起的浅受体水平和优异的电化学活性使得表面 Cd 掺杂剂同时充当捕获中心和活性位点,以介导反应界面处的光空穴动力学。深入的光载流子动力学分析表明,Cd 掺杂剂的高效光空穴捕获可实现光载流子的有效空间分离和表面反应动力学的加速。因此,最佳的2D Cd-ZIS实现了优异的PEC太阳能转换效率,在1.23 V RHE下的光电流密度为5.1 mA cm -2 ,并且外加偏压光子电流效率(ABPE)为3.0%的记录。这项工作揭示了有效调节下一代半导体 PEC 光电阳极的光孔动力学的微结构设计策略。
更新日期:2023-11-01
中文翻译:
替代性 Cd 掺杂剂作为光空穴转移介体促进 2D Cd-ZnIn2S4 光阳极的光电化学太阳能转换
光载流子的快速复合动力学与缓慢的表面光空穴氧化动力学竞争严重限制了光电阳极的光电化学(PEC)转换效率。在这里,开发了一种缺陷工程策略来调节 2D ZnIn 2 S 4 (ZIS) 的光空穴传输和界面注入动力学。通过在ZIS基面的Zn位点选择性地引入替代性Cd掺杂剂,成功地调节了Cd掺杂ZIS(Cd-ZIS)纳米片阵列光电阳极的能带结构和表面电化学活性。综合表征表明,Cd 掺杂引起的浅受体水平和优异的电化学活性使得表面 Cd 掺杂剂同时充当捕获中心和活性位点,以介导反应界面处的光空穴动力学。深入的光载流子动力学分析表明,Cd 掺杂剂的高效光空穴捕获可实现光载流子的有效空间分离和表面反应动力学的加速。因此,最佳的2D Cd-ZIS实现了优异的PEC太阳能转换效率,在1.23 V RHE下的光电流密度为5.1 mA cm -2 ,并且外加偏压光子电流效率(ABPE)为3.0%的记录。这项工作揭示了有效调节下一代半导体 PEC 光电阳极的光孔动力学的微结构设计策略。