当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Comprehensive Understandings of Hydrogen Bond Chemistry in Aqueous Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2023-11-01 , DOI: 10.1002/adma.202308628 Ming Li 1, 2 , Xuanpeng Wang 3, 4 , Jiashen Meng 1 , Chunli Zuo 1 , Buke Wu 5 , Cong Li 1 , Wei Sun 2 , Liqiang Mai 1, 4
Advanced Materials ( IF 27.4 ) Pub Date : 2023-11-01 , DOI: 10.1002/adma.202308628 Ming Li 1, 2 , Xuanpeng Wang 3, 4 , Jiashen Meng 1 , Chunli Zuo 1 , Buke Wu 5 , Cong Li 1 , Wei Sun 2 , Liqiang Mai 1, 4
Affiliation
Aqueous batteries are emerging as highly promising contenders for large-scale grid energy storage because of uncomplicated assembly, exceptional safety, and cost-effectiveness. The unique aqueous electrolyte with a rich hydrogen bond (HB) environment inevitably has a significant impact on the electrode materials and electrochemical processes. While numerous reviews have focused on the materials design and assembly of aqueous batteries, the utilization of HB chemistry is overlooked. Herein, instead of merely compiling recent advancements, this review presents a comprehensive summary and analysis of the profound implication exerted by HB on all components of the aqueous batteries. Intricate links between the novel HB chemistry and various aqueous batteries are ingeniously constructed within the critical aspects, such as self-discharge, structural stability of electrode materials, pulverization, solvation structures, charge carrier diffusion, corrosion reactions, pH sensitivity, water splitting, polysulfides shuttle, and H2S evolution. By adopting a vantage point that encompasses material design, binder and separator functionalization, electrolyte regulation, and HB optimization, a critical examination of the key factors that impede electrochemical performance in diverse aqueous batteries is conducted. Finally, insights are rendered properly based on HB chemistry, with the aim of propelling the advancement of state-of-the-art aqueous batteries.
中文翻译:
全面了解水系电池中的氢键化学
由于组装简单、卓越的安全性和成本效益,水电池正在成为大规模电网储能领域极具前景的竞争者。独特的水性电解质具有丰富的氢键(HB)环境,不可避免地对电极材料和电化学过程产生重大影响。虽然许多评论都集中在水电池的材料设计和组装上,但 HB 化学的利用却被忽视了。在此,本文不是简单地汇编最新进展,而是对HB对水系电池所有组件所产生的深刻影响进行了全面的总结和分析。新型HB化学与各种水系电池之间的复杂联系在关键方面被巧妙地构建,例如自放电、电极材料的结构稳定性、粉碎、溶剂化结构、载流子扩散、腐蚀反应、pH敏感性、水分解、多硫化物航天飞机和H 2 S演化。通过采用材料设计、粘合剂和隔膜功能化、电解质调节和HB优化等优势,对阻碍不同水系电池电化学性能的关键因素进行了严格的检查。最后,基于HB化学正确地提出见解,旨在推动最先进的水性电池的进步。
更新日期:2023-11-01
中文翻译:
全面了解水系电池中的氢键化学
由于组装简单、卓越的安全性和成本效益,水电池正在成为大规模电网储能领域极具前景的竞争者。独特的水性电解质具有丰富的氢键(HB)环境,不可避免地对电极材料和电化学过程产生重大影响。虽然许多评论都集中在水电池的材料设计和组装上,但 HB 化学的利用却被忽视了。在此,本文不是简单地汇编最新进展,而是对HB对水系电池所有组件所产生的深刻影响进行了全面的总结和分析。新型HB化学与各种水系电池之间的复杂联系在关键方面被巧妙地构建,例如自放电、电极材料的结构稳定性、粉碎、溶剂化结构、载流子扩散、腐蚀反应、pH敏感性、水分解、多硫化物航天飞机和H 2 S演化。通过采用材料设计、粘合剂和隔膜功能化、电解质调节和HB优化等优势,对阻碍不同水系电池电化学性能的关键因素进行了严格的检查。最后,基于HB化学正确地提出见解,旨在推动最先进的水性电池的进步。