当前位置:
X-MOL 学术
›
Appl. Catal. B Environ. Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hierarchical structured Ti-doped CeO2 stabilized CoMn2O4 for enhancing the low-temperature NH3-SCR performance within highly H2O and SO2 resistance
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2023-10-31 , DOI: 10.1016/j.apcatb.2023.123442
Ning Luo , Fengyu Gao , Hengheng Liu , Tingkai Xiong , Jiajun Wen , Erhong Duan , Chengzhi Wang , Shunzheng Zhao , Honghong Yi , Xiaolong Tang
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2023-10-31 , DOI: 10.1016/j.apcatb.2023.123442
Ning Luo , Fengyu Gao , Hengheng Liu , Tingkai Xiong , Jiajun Wen , Erhong Duan , Chengzhi Wang , Shunzheng Zhao , Honghong Yi , Xiaolong Tang
![]() |
Developing effective and stable catalysts for low-temperature selective catalytic reduction (SCR) of NO remains challenging. Herein, we constructed a hierarchical structure by loading CoMnO onto Ti-doped CeO, that CoMnO/CeTiO catalyst has shown superior deNO activity (>95% at 100–225 °C), prominent reaction activation energy (28.8 ± 0.9 kJ mol) and outstanding stability (>75% at 100–200 °C within HO and SO). The “low-temperature active sites” and “dual anti-poisoning sites” contribute to excellent activity and stability. Firstly, the hierarchical structure boosts generation of active metal-support interface, which is conducive to oxygen migration (including adsorbed oxygen (O), lattice oxygen (O) and oxygen vacancy (O)) and metal charge transfer (Mn+Ce↔Mn+Ce, Ti+Ce↔Ce+Ti). This is the key to breaking through the limits of catalytic activity stability. Secondly, enhanced surface acidity favors NH adsorption and activation, which accelerates -NH/-NH concatenate with NO through Eley-Rideal mechanism to generate N and HO. Thirdly, the dual strong SO affinity sites by Ti-induced CeO crystal reconstruction retard the active center affected by the sulfate species, which contributes to striking stability. This work highlights the importance of design of isolated active sites to improve SO and HO endurance.
中文翻译:
分层结构的 Ti 掺杂 CeO2 稳定 CoMn2O4 可增强高 H2O 和 SO2 抗性下的低温 NH3-SCR 性能
开发用于低温选择性催化还原 (SCR) NO 的有效且稳定的催化剂仍然具有挑战性。在此,我们通过将CoMnO负载到Ti掺杂的CeO上构建了分级结构,该CoMnO/CeTiO催化剂表现出优异的脱NO活性(在100-225℃下> 95%),突出的反应活化能(28.8±0.9kJ·mol)和出色的稳定性(在 100–200 °C 的 H2O 和 SO 中,>75%)。 “低温活性位点”和“双重抗中毒位点”有助于优异的活性和稳定性。首先,分级结构促进了活性金属-载体界面的生成,有利于氧迁移(包括吸附氧(O)、晶格氧(O)和氧空位(O))和金属电荷转移(Mn+Ce↔Mn) +Ce, Ti+Ce↔Ce+Ti)。这是突破催化活性稳定性极限的关键。其次,增强的表面酸性有利于NH的吸附和活化,从而加速-NH/-NH通过Eley-Rideal机制与NO连接生成N和H2O。第三,Ti诱导的CeO晶体重建产生的双强SO亲和位点延迟了受硫酸盐物质影响的活性中心,这有助于显着的稳定性。这项工作强调了设计隔离活性位点以提高 SO 和 H2O 耐久性的重要性。
更新日期:2023-10-31
中文翻译:

分层结构的 Ti 掺杂 CeO2 稳定 CoMn2O4 可增强高 H2O 和 SO2 抗性下的低温 NH3-SCR 性能
开发用于低温选择性催化还原 (SCR) NO 的有效且稳定的催化剂仍然具有挑战性。在此,我们通过将CoMnO负载到Ti掺杂的CeO上构建了分级结构,该CoMnO/CeTiO催化剂表现出优异的脱NO活性(在100-225℃下> 95%),突出的反应活化能(28.8±0.9kJ·mol)和出色的稳定性(在 100–200 °C 的 H2O 和 SO 中,>75%)。 “低温活性位点”和“双重抗中毒位点”有助于优异的活性和稳定性。首先,分级结构促进了活性金属-载体界面的生成,有利于氧迁移(包括吸附氧(O)、晶格氧(O)和氧空位(O))和金属电荷转移(Mn+Ce↔Mn) +Ce, Ti+Ce↔Ce+Ti)。这是突破催化活性稳定性极限的关键。其次,增强的表面酸性有利于NH的吸附和活化,从而加速-NH/-NH通过Eley-Rideal机制与NO连接生成N和H2O。第三,Ti诱导的CeO晶体重建产生的双强SO亲和位点延迟了受硫酸盐物质影响的活性中心,这有助于显着的稳定性。这项工作强调了设计隔离活性位点以提高 SO 和 H2O 耐久性的重要性。